9.極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系xoy的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,已知曲線C的極坐標(biāo)方程為ρ=4(cosθ+sinθ).
(Ⅰ)求C的直角坐標(biāo)方程;
(Ⅱ)直線l:$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=1+\frac{{\sqrt{3}}}{2}t\end{array}\right.(t$為參數(shù))與曲線C交于A,B兩點(diǎn),定點(diǎn)E(0,1),求|EA|•|EB|.

分析 (Ⅰ)由曲線C的極坐標(biāo)方程能求出曲線C的直角坐標(biāo)方程.
(Ⅱ)將l的參數(shù)方程代入曲線C的直角坐標(biāo)方程,得${t^2}-(\sqrt{3}+2)t-3=0$,由此利用韋達(dá)定理能求出|EA|•|EB|.

解答 解:(Ⅰ)在ρ=4(cosθ+sinθ)中,
兩邊同乘以ρ,得ρ2=4(ρcosθ+ρsinθ),
則C的直角坐標(biāo)方程為x2+y2=4x+4y,
即(x-2)2+(y-2)2=8.…(5分)
(Ⅱ)將l的參數(shù)方程代入曲線C的直角坐標(biāo)方程,
得${t^2}-(\sqrt{3}+2)t-3=0$,
所以$\left\{{\begin{array}{l}{{t_1}+{t_2}=\sqrt{3}+2}\\{{t_1}{t_2}=-3}\end{array}}\right.$,
則|EA|•|EB|=|t1t2|=3…(10分)

點(diǎn)評(píng) 本題考查圓、直線方程、極坐標(biāo)方程、直角坐標(biāo)方程、參數(shù)方程、兩線段乘積、韋達(dá)定理等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.下列四個(gè)命題:
①若△ABC的面積為$\frac{\sqrt{3}}{2}$,c=2,A=60°,則a的值為$\sqrt{3}$;
②等差數(shù)列{an}中,a1=2,a1,a3,a4成等比數(shù)列,則公差為-$\frac{1}{2}$;
③已知a>0,b>0,a+b=1,則$\frac{2}{a}$+$\frac{3}$的最小值為5+2$\sqrt{6}$;
④在△ABC中,若sin2A<sin2B+sin2C,則△ABC為銳角三角形.
其中正確命題的序號(hào)是①③  .(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),過(guò)C上一點(diǎn)$({2\sqrt{2},\sqrt{2}})$的切線l的方程為x+2y-4$\sqrt{2}$=0.
(1)求橢圓C的方程.
(2)設(shè)過(guò)點(diǎn)M(0,1)且斜率不為0的直線交橢圓于A,B兩點(diǎn),試問(wèn)y軸上是否存在點(diǎn)P,使得$\overrightarrow{PM}=λ(\frac{{\overrightarrow{PA}}}{{|{\overrightarrow{PA}}|}}+\frac{{\overrightarrow{PB}}}{{|{\overrightarrow{PB}}|}})$?若存在,求出點(diǎn)P的坐標(biāo);若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{{e}^{x}}{x}$-a(x-lnx).
(1)當(dāng)a=1時(shí),試求f(x)在(1,f(1))處的切線方程;
(2)當(dāng)a≤0時(shí),試求f(x)的單調(diào)區(qū)間;
(3)若f(x)在(0,1)內(nèi)有極值,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=cos2x+asinx+2a-1,a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)的最值并求出對(duì)應(yīng)的x值;
(2)如果對(duì)于區(qū)間$[-\frac{π}{2},\frac{π}{2}]$上的任意一個(gè)x,都有f(x)≤5恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.對(duì)某種電子元件進(jìn)行壽命追蹤調(diào)查,情況如下:
壽命(h)100~200200~300300~400400~500500~600
個(gè)數(shù)2030804030
(1)畫出頻率分布直方圖;
(2)估計(jì)該電子元件壽命的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在60°角內(nèi)有一點(diǎn)P,到兩邊的距離分別為1cm和2cm,則P到角頂點(diǎn)的距離為$\frac{2\sqrt{21}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知${({1-2x})^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$,則|a0|+|a1|+|a2|+…+|a7|=2187.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)f(x)=x+sinx在$x=\frac{π}{2}$處的切線與兩坐標(biāo)軸圍成的三角形面積為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案