已知橢圓的中心是坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為
2
2
,又橢圓上任一點(diǎn)到兩焦點(diǎn)的距離和為2
2
,過點(diǎn)M(0,-
1
3
)與x軸不垂直的直線l交橢圓于P、Q兩點(diǎn).
(1)求橢圓的方程;
(2)在y軸上是否存在定點(diǎn)N,使以PQ為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出N的坐標(biāo),若不存在,說明理由.
(1)因?yàn)殡x心率為
2
2
,又2a=2
2
,∴a=
2
,c=1,故b=1,故橢圓的方程為
x2
2
+y2=1
;
(2)設(shè)l的方程為y=kx-
1
3

y=kx-
1
3
x2
2
+y2=1
得(2k2+1)x2-
4
3
kx-
16
9
=0,
設(shè)P(x1,y1),Q(x2,y2),則x1+x2=
4k
3(2k2+1)
,x1•x2=-
16
9(2k2+1)
,
假設(shè)在y軸上存在定點(diǎn)N(0,m)滿足題設(shè),則
NP
=(x1,y1-m)
,
NQ
=(x2,y2-m)
,
NP
NQ
=x1x2+(y1-m)(y2-m)=x1x2+y1y2-m(y1+y2)+m2
=x1x2+(kx1-
1
3
)( kx2-
1
3
)-m(kx1-
1
3
+kx2-
1
3
)+m2
=(k2+1)x1x2-k(
1
3
+m)•(x1+x2)+m2+
2
3
m+
1
9

=-
16
9(2k2+1)
-k(
1
3
+m)•
4k
3(2k2+1)
+m2+
2
3
m+
1
9

=
18(m2-1)k2+(9m2+6m-15)
9(2k2+1)

由假設(shè)得對(duì)于任意的k∈R,
NP
NQ
=0恒成立,即
m2-1=0
9m2+6m-15=0
,解得m=1,
因此,在y軸上存在定點(diǎn)N,使得以PQ為直徑的圓恒過這個(gè)點(diǎn),點(diǎn)N的坐標(biāo)為(0,1).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心是坐標(biāo)原點(diǎn)O,它的短軸長(zhǎng)為2,右焦點(diǎn)為F,直線l:x=2與x軸相交于點(diǎn)E,
FE
=
OF
,過點(diǎn)F的直線與橢圓相交于A,B兩點(diǎn),點(diǎn)C和點(diǎn)D在l上,且AD∥BC∥x軸.
(Ⅰ)求橢圓的方程及離心率;
(Ⅱ)求證:直線AC經(jīng)過線段EF的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心是坐標(biāo)原點(diǎn)O,它的短軸長(zhǎng)為2,右焦點(diǎn)為F,右準(zhǔn)線l與x軸相交于點(diǎn)E,
FE
=
OF
,過點(diǎn)F的直線與橢圓相交于A,B兩點(diǎn),點(diǎn)C和點(diǎn)D在l上,且AD∥BC∥x軸.
(I)求橢圓的方程及離心率;
(II)當(dāng)|BC|=
1
3
|AD|
時(shí),求直線AB的方程;
(III)求證:直線AC經(jīng)過線段EF的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心是坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為
2
2
,又橢圓上任一點(diǎn)到兩焦點(diǎn)的距離和為2
2
,過點(diǎn)M(0,-
1
3
)與x軸不垂直的直線l交橢圓于P、Q兩點(diǎn).
(1)求橢圓的方程;
(2)在y軸上是否存在定點(diǎn)N,使以PQ為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出N的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津模擬)已知橢圓的中心是坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,短軸長(zhǎng)為2,且兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為一個(gè)正方形的頂點(diǎn).過右焦點(diǎn)F與x軸不垂直的直線l交橢圓于P,Q兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)在線段OF上是否存在點(diǎn)M(m,0),使得|MP|=|MQ|?若存在,求出m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆河北省高二上學(xué)期期中理科數(shù)學(xué)試卷 題型:解答題

已知橢圓的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且橢圓過點(diǎn)三點(diǎn).

(1)求橢圓的方程;

(2)若點(diǎn)為橢圓上不同于的任意一點(diǎn),,求內(nèi)切圓的面積的最大值,并指出其內(nèi)切圓圓心的坐標(biāo).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案