若n為大于1的自然數(shù),求證:
1
n+1
+
1
n+2
+…+
1
2n
13
24
考點(diǎn):數(shù)列與不等式的綜合
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:當(dāng)n=2時(shí),
1
2+1
+
1
4
13
24
,不等式成立,假定n=k時(shí),不等式成立,再推導(dǎo)出當(dāng)n=k+1時(shí),不等式成立,由此利用數(shù)學(xué)歸納法能證明
1
n+1
+
1
n+2
+…+
1
2n
13
24
解答: 證明:當(dāng)n=2時(shí),
1
2+1
+
1
4
13
24
,不等式成立
假定n=k時(shí),不等式成立,即
1
k+1
+
1
k+2
+…+
1
2k
13
24

當(dāng)n=k+1時(shí),
1
k+2
+
1
k+3
+…+
1
2(k+1)

=
1
k+1
+
1
k+2
+…+
1
2k
-
1
k+1
+
1
2k+1
+
1
2k+2

13
24
-
1
k+1
+
1
2k+1
+
1
2k+2
13
24

其中-
1
k+1
+
1
2k+1
+
1
2k+2
=
1
2k+1
-
1
2k+2
>0

由數(shù)學(xué)歸納法得命題成立.
1
n+1
+
1
n+2
+…+
1
2n
13
24
點(diǎn)評(píng):本題考查不等式的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意數(shù)學(xué)歸納法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙C1(x-2)2+(y+3)2=25,過(guò)點(diǎn)A(-1,0)的弦中,弦長(zhǎng)的最大值為M,最小值為m,則M-m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿(mǎn)足an+1=
2
an,n為奇數(shù)
2
an+1,n為偶數(shù)
,且a1=1,則a19=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足al=2,an+l=2an2,n∈N*
(Ⅰ)證明:數(shù)列{1+log2an}為等比數(shù)列;
(Ⅱ)證明:
1
1+log2a1
+
2
1+log2a2
+…+
n
1+log2an
<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的外接圓半徑為1,圓心為O,且3
OA
+4
OB
+5
OC
=
0
,則 
OC
AB
的值為( 。
A、-
1
5
B、
1
5
C、-
6
5
D、
6
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和sn=an+n2-1,數(shù)列{bn}滿(mǎn)足3n•bn+1=(n+1)an+1-nan,且b1=3
(1)求an,bn
(2)設(shè)Tn為數(shù)列{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等差數(shù)列,a1=1,公差d>0,數(shù)列{bn}為等比數(shù)列,且a2=b1,a6=b2,a18=b3
(1)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿(mǎn)足對(duì)任意正整數(shù)n均有
c1
b1
+
c2
b2
+…+
cn
bn
=
1
2
an2,m為正整數(shù),求所有滿(mǎn)足不等式102<c1+c2+…+cm<103的m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,某幾何體的三視圖在網(wǎng)格紙上,且網(wǎng)格紙上小正方形的邊長(zhǎng)為1,則該幾何體的體積為( 。
A、6π+4
B、12π+4
C、6π+12
D、12π+12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的前n項(xiàng)和為Sn對(duì)任意正整數(shù)n都有Sn=2an-1,則S6=( 。
A、32B、31C、64D、63

查看答案和解析>>

同步練習(xí)冊(cè)答案