已知雙曲線=1(a>0,b>0)的左、右焦點分別為F1、F2,點P在雙曲線的右支上,且|PF1|=4|PF2|,則雙曲線離心率e的最大值為________.

 

【答案】

【解析】

試題分析:解法一:∵

在△PF1F2中,由余弦定理得

兩邊同時除以a2,得

又cos(-1,1),∴4<4e2,1<e.

當點P、F1、F2共線時,θ=180°,e=,則1<e,e的最大值為.

解法二:由

設(shè)|PP′|為點P到準線的距離,

考點:本題主要考查雙曲線的定義及其幾何性質(zhì),余弦定理。

點評:基礎(chǔ)題,由于題目條件中出現(xiàn)了曲線上的點到焦點的距離,易于想到運用雙曲線定義。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2013屆江西省高二下學期第二次月考文科數(shù)學試卷(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的離心率e,直線lA(a,0),B(0,-b)兩點,原點O到直線l的距離是.

(1)求雙曲線的方程;

(2)過點B作直線m交雙曲線于M、N兩點,若·=-23,求直線m的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆安徽省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:選擇題

已知雙曲線-=1(a>0,b>0)的右焦點為F,若過點F且傾斜角為60°的直線與雙曲線的右支有且只有一個交點,則此雙曲線離心率的取值范圍是 (   )

A.[1,2]    B.(1,2)       C.[2,+∞)      D.(2,+∞)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012年福建省福州市高二上學期期末考試文科數(shù)學 題型:解答題

(本題滿分12分)

已知雙曲線=1(a>0,b>0)的左、右焦點分別為F1(-c,0),F2(c,0),若雙曲線上存在一點P,使=,求雙曲線的離心率的范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆廣東省高二上學期期末考試理科數(shù)學 題型:選擇題

已知雙曲線=1(a>0,b>0)的右焦點為F,若過點F且傾斜角為60°的直線與雙曲線的右支有且只有一個交點,則此雙曲線離心率的取值范圍是(          )

A.[1,2]              B.(1,2)         C.[2,+∞)       D.(2,+∞)

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:安徽省蚌埠二中2013屆高二下學期期中考試理科數(shù)學試卷(解析版) 題型:選擇題

已知雙曲線-=1(a>0,b>0)的右焦點為F,若過點F且傾斜角為60°的直線與雙曲線的右支有且只有一個交點,則此雙曲線離心率的取值范圍是 (   )

A.[1,2]    B.(1,2)       C.[2,+∞)      D.(2,+∞)

 

查看答案和解析>>

同步練習冊答案