將一個(gè)水平放置的正方形繞直線向上轉(zhuǎn)動(dòng),再將所得正方形繞直線向上轉(zhuǎn)動(dòng),則平面與平面所成二面角的正弦值等于______

試題分析:如圖,先構(gòu)造一個(gè)正方體,令正方體的邊長(zhǎng)為,連結(jié),作平面與面

所成角為于點(diǎn).作的平行線的延長(zhǎng)線于,連結(jié)那么平面與平面所成二面角即為平面與平面所成二角,因?yàn)槊?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025840068473.png" style="vertical-align:middle;" />與面所成角為,易知點(diǎn)到面的距離為,故,所以,
那么,,所以面與面所成二面角的余弦值為:
,故正弦值為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直三棱柱中, ,中點(diǎn),求直線與平面所成角的大小.(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,側(cè)棱AA1⊥面ABC,D、E分別是棱A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且

(Ⅰ)求證:EF∥平面BDC1;
(Ⅱ)求二面角E-BC1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在直三棱柱ABC-A1B1C1中,若∠BAC=90°,ABACAA1,則異面直線BA1AC1所成角的余弦值為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,直三棱柱ABC­A1B1C1中,AB=AC=1,AA1=2,∠B1A1C1=90°,D為BB1的中點(diǎn),則異面直線C1D與A1C所成角的余弦值為_(kāi)_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在正方體中,直線和平面所成角的余弦值大小為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

三棱柱中,所成角均為,,且,則所成角的余弦值為(   )
A.1B.-1C.D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,是直三棱柱,為直角,點(diǎn)、分別是的中點(diǎn),若,則所成角的余弦值是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直四棱柱ABCD—A′B′C′D′的底面是菱形,,E、F分別是棱CC′與BB′上的點(diǎn),且EC=BC=2FB=2.

(1)求證:平面AEF⊥平面AA′C′C;
(2)求截面AEF與底面ABCD所成二面角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案