【題目】若定義在R上的函數(shù)對(duì)任意的 ,都有 成立,且當(dāng) 時(shí),

(1)求的值;

(2)求證: 是R上的增函數(shù);

(3)若 ,不等式 對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)1(2)見解析(3)

【解析】試題分析:(1)利用賦值法, ,代人解得 (2)先利用單調(diào)性定義,作差得 ,再利用條件 得差的符號(hào)(3)先利用賦值法求 ,再利用函數(shù)單調(diào)性去f得 ,最后根據(jù)二次函數(shù)最值求實(shí)數(shù)a的取值范圍

試題解析:(1)解:定義在R上的函數(shù)對(duì)任意的,

都有成立

(2)證明: 任取,且,則

是R上的增函數(shù)

(3) 解:∵,且

由不等式

由(2)知:是R上的增函數(shù)

故只需

當(dāng)時(shí),

當(dāng)時(shí),

當(dāng)時(shí),

綜上所述, 實(shí)數(shù)的取值范圍

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|2a≤x<a+3},B={x|x<﹣1或x>5}.
(1)若a=﹣1,求A∪B,(RA)∩B.
(2)若A∩B=,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形中, , , , 分別為的中點(diǎn),對(duì)于常數(shù),在梯形的四條邊上恰好有8個(gè)不同的點(diǎn),使得成立,則實(shí)數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣a(x+1)(a≠0).
(1)討論f(x)的單調(diào)性;
(2)若f(x)>a2﹣a,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)y=xm22m3(m∈Z)的圖象與x , y軸都無公共點(diǎn),且,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,圓的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)).

(Ⅰ)若, 是直線軸的交點(diǎn), 是圓上一動(dòng)點(diǎn),求的最大值;

(Ⅱ)若直線被圓截得的弦長(zhǎng)等于圓的半徑倍,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將5個(gè)小球放到3個(gè)盒子中,在下列條件下,各有多少種投放方法?
①小球不同,盒子不同,盒子不空;
②小球不同,盒子不同,盒子可空;
③小球不同,盒子相同,盒子不空;
④小球不同,盒子相同,盒子可空;
⑤小球相同,盒子不同,盒子不空;
⑥小球相同,盒子不同,盒子可空;
⑦小球相同,盒子相同,盒子不空;
⑧小球相同,盒子相同.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】語文老師要從10篇課文中隨機(jī)抽3篇讓學(xué)生背誦,某學(xué)生只能背誦其中的6篇,求:
(1)抽到他能背誦的課文的數(shù)量的分布列;
(2)他能及格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組函數(shù)中,表示同一函數(shù)的是(  )
A.y= 與y=
B.y=lnex與y=elnx
C.y= 與y=x+3
D.y=x0與y=

查看答案和解析>>

同步練習(xí)冊(cè)答案