(2007•揭陽二模)某地區(qū)的一種特色水果上市時間僅能持續(xù)幾個月,預(yù)測上市初期和后期會因供不應(yīng)求使價格呈連續(xù)上漲的態(tài)勢,而中期又將出現(xiàn)供大于求使價格連續(xù)下跌,為準(zhǔn)確研究其價格走勢,下面給出的四個價格模擬函數(shù)中合適的是(其中p,q為常數(shù),且q>1,x∈[0,5],x=0表示4月1日,x=1表示5月1日,…以此類推)( 。
分析:從三個函數(shù)的單調(diào)上考慮,分析答案中四個函數(shù)的單調(diào)性,并與已知要求進(jìn)行比照,即可得到擬合效果最好的函數(shù)模型.
解答:解:因為A中,f(x)=pqx,是單調(diào)函數(shù),不滿足要求;
B中,f(x)=px2+qx+1,為二次函數(shù),有一個單調(diào)遞增區(qū)間和一個單調(diào)遞減區(qū)間,不滿足要求;
C中,f(x)=(x-1)(x-q)2+q時,f′(x)=3x2-(4q+2)+q2+2q,令f′(x)=0,得x=q,x=
q+2
3
,f(x)有兩個零點(diǎn),可以出現(xiàn)兩個遞增區(qū)間和一個遞減區(qū)間,滿足要求;
D中,f(x)=plnx+qx2中,f′(x)=
x
p
+qx
,至多也只有一個單調(diào)遞增區(qū)間和一個單調(diào)遞減區(qū)間,不滿足要求.
故選C.
點(diǎn)評:本題主要考查函數(shù)模型的選擇與應(yīng)用,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•揭陽二模)如圖(1)示,定義在D上的函數(shù)f(x),如果滿足:對?x∈D,?常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖(1)、(2)中的常數(shù)A、B可以是正數(shù),也可以是負(fù)數(shù)或零)  

(Ⅰ)試判斷函數(shù)f(x)=x3+
48
x
在(0,+∞)上是否有下界?并說明理由;
(Ⅱ)又如具有如圖(2)特征的函數(shù)稱為在D上有上界.請你類比函數(shù)有下界的定義,給出函數(shù)f(x)在D上有上界的定義,并判斷(Ⅰ)中的函數(shù)在(-∞,0)上是否有上界?并說明理由;
(Ⅲ)若函數(shù)f(x)在D上既有上界又有下界,則稱函數(shù)f(x)在D上有界,函數(shù)f(x)叫做有界函數(shù).試探究函數(shù)f(x)=ax3+
b
x
(a>0,b>0a,b是常數(shù))是否是[m,n](m>0,n>0,m、n是常數(shù))上的有界函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•揭陽二模)下圖是用同樣規(guī)格的黑、白兩色正方形瓷磚鋪設(shè)的若干圖案,則按此規(guī)律第n個圖案中需用黑色瓷磚
4n+8
4n+8
塊.(用含n的代數(shù)式表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•揭陽二模)已知函數(shù)f(x)=logax(a>0,a≠1)的圖象如右圖示,函數(shù)y=g(x)的圖象與y=f(x)的圖象關(guān)于直線y=x對稱,則函數(shù)y=g(x)的解析式為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•揭陽二模)已知點(diǎn)P(x,y)的坐標(biāo)滿足條件
x+y≤4
y≥x
x≥1.
則x2+y2的最大值為( 。

查看答案和解析>>

同步練習(xí)冊答案