9.在等差數(shù)列{an}中,a4=2,a5=4,記an的前n項(xiàng)和為Sn,則S8=( 。
A.12B.16C.24D.48

分析 由等差數(shù)列{an}的性質(zhì)可得,a1+a8=a4+a5,再利用求和公式即可得出.

解答 解:由等差數(shù)列{an}的性質(zhì)可得,a1+a8=a4+a5=2+4=6,
∴S8=$\frac{8({a}_{1}+{a}_{8})}{2}$=4×6=24.
故選:C.

點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì)及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù) f(x)=x3-2x2+1,
(1)若f(x)在區(qū)間[-1,2]上的極值;
(2)求經(jīng)過點(diǎn)P(2,1)且與曲線y=f(x)相切的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.命題“若a<b,則ac2≤bc2”以及它的逆命題,否命題和逆否命題中,真命題的個(gè)數(shù)是( 。
A.0B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點(diǎn)F1(-3,0),F(xiàn)2(3,0),曲線上的動(dòng)點(diǎn)M滿足|MF1|-|MF2|=-4,則該曲線的方程為( 。
A.$\frac{y^2}{4}$-$\frac{x^2}{5}$=1(y≤-2)B.$\frac{y^2}{4}$-$\frac{x^2}{5}$=1C.$\frac{x^2}{4}$-$\frac{y^2}{5}$=1(x≤-2)D.$\frac{x^2}{4}$-$\frac{y^2}{5}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.?dāng)?shù)列{1+2n-1}的前n項(xiàng)和為n+2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)求證:$\sqrt{2}$是無理數(shù).
(2)設(shè)a,b,c為一個(gè)三角形的三邊,且s2=2ab,這里s=$\frac{1}{2}$(a+b+c),試證:s<2a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列結(jié)論中,錯(cuò)誤的為(  )
A.對(duì)任意的x∈R,都有2x≥x2成立
B.存在實(shí)數(shù)x0,使得log${\;}_{\frac{1}{2}}$x0>x0
C.存在常數(shù)C,當(dāng)x>C時(shí),都有2x≥x2成立
D.存在實(shí)數(shù)x0,使得log${\;}_{\frac{1}{2}}$x0>2${\;}^{{x}_{0}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=4+t}\end{array}\right.$(t為參數(shù)).以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2的方程為ρ=4sinθ,
(1)求曲線C1與C2的直角坐標(biāo)方程;
(2)曲線C1與C2交于M,N兩點(diǎn),求線段MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.方程(x+2)(x+4)(x+6)(x+8)=105的解是x=-1,或x=-9.

查看答案和解析>>

同步練習(xí)冊(cè)答案