18.閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的T的值為( 。
A.57B.120C.183D.247

分析 模擬程序的運(yùn)行,依次寫出每次循環(huán)得到的T,k的值,可得當(dāng)k=63時(shí)滿足條件k>60,退出循環(huán),輸出T的值為120,即可得解.

解答 解:模擬程序的運(yùn)行,可得
T=0,k=1
T=1
不滿足條件k>60,k=3,T=4
不滿足條件k>60,k=7,T=11
不滿足條件k>60,k=15,T=26
不滿足條件k>60,k=31,T=57
不滿足條件k>60,k=63,T=120
滿足條件k>60,退出循環(huán),輸出T的值為120.
故選:B.

點(diǎn)評 本題考查的知識點(diǎn)是循環(huán)結(jié)構(gòu),當(dāng)循環(huán)次數(shù)不多時(shí),多采用模擬循環(huán)的方法,本題屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面( 。
A.若m∥α,m∥β,則α∥βB.若m⊥α,m∥β,則α∥βC.若m⊥α,n∥α,則m∥nD.若m⊥α,n⊥α,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$Ω:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,過點(diǎn)$Q({\frac{{\sqrt{2}}}{2},1})$作圓x2+y2=1的切線,切點(diǎn)分別為S,T.直線ST恰好經(jīng)過Ω的右頂點(diǎn)和上頂點(diǎn).
(1)求橢圓Ω的方程;
(2)如圖,過橢圓Ω的右焦點(diǎn)F作兩條互相垂直的弦AB,CD.
①設(shè)AB,CD的中點(diǎn)分別為M,N,證明:直線MN必過定點(diǎn),并求此定點(diǎn)坐標(biāo);
②若直線AB,CD的斜率均存在時(shí),求由A,C,B,D四點(diǎn)構(gòu)成的四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知雙曲線與橢圓$\frac{x^2}{16}+\frac{y^2}{3}=1$有相同的焦點(diǎn),且其中一條漸近線為$y=\frac{3}{2}x$,則該雙曲線的標(biāo)準(zhǔn)方程是$\frac{x^2}{4}-\frac{y^2}{9}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程.
(1)焦點(diǎn)在y軸上,c=6,$e=\frac{2}{3}$;
(2)短軸的一個(gè)端點(diǎn)到一個(gè)焦點(diǎn)的距離為5,焦點(diǎn)到橢圓中心的距離為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.${(\frac{1}{2x}-\sqrt{x})^9}$的展開式中的常數(shù)項(xiàng)為$\frac{21}{2}$.(用數(shù)學(xué)作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖的三視圖所對應(yīng)的立體圖形可以是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知圓C:x2+y2=4上所有的點(diǎn)滿足約束條件$\left\{\begin{array}{l}{x+y+4≥0}\\{2x-y+8≥0}\\{x≤m}\end{array}\right.$,當(dāng)m取最小值時(shí),可行域(不等式組所圍成的平面區(qū)域)的面積為(  )
A.48B.54C.24$\sqrt{2}$D.36$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,BC=$\sqrt{5}$,AC=3,sinC=2sinA.
(1)求AB的值;
(2)求cos(A+$\frac{π}{4}$)的值.

查看答案和解析>>

同步練習(xí)冊答案