7.已知函數(shù)f(x)=loga$\frac{1-x}{x+1}$(a>0,a≠1).
(I)求函數(shù)的定義域;
(Ⅱ)判斷函數(shù)的奇偶性,并說(shuō)明理由;
(Ⅲ)解不等式f(x)>0.

分析 (Ⅰ)解不等式$\frac{1-x}{x+1}>0$即可得出該函數(shù)的定義域;
(Ⅱ)可先判斷定義域關(guān)于原點(diǎn)對(duì)稱,然后求f(-x),便可得到f(-x)=-f(x),從而得出f(x)為奇函數(shù);
(Ⅲ)討論a:0<a<1,和a>1,根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性,在每種情況下會(huì)得到一個(gè)關(guān)于x的不等式,解不等式即可得出x的范圍,即得出原不等式的解集.

解答 解:(Ⅰ)解$\frac{1-x}{x+1}>0$,得-1<x<1;
∴函數(shù)的定義域?yàn)椋?1,1);
(Ⅱ)∵函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱;
且$f(-x)=lo{g}_{a}\frac{1+x}{1-x}=lo{g}_{a}(\frac{1-x}{1+x})^{-1}=-lo{g}_{a}\frac{1-x}{1+x}=-f(x)$;
∴f(x)為奇函數(shù);
(Ⅲ)∵f(x)>0,①當(dāng)0<a<1時(shí),$0<\frac{1-x}{1+x}<1$;
解得0<x<1;
②當(dāng)a>1時(shí),$\frac{1-x}{1+x}>1$;
∴-1<x<0.

點(diǎn)評(píng) 考查函數(shù)定義域的概念及求法,對(duì)數(shù)的真數(shù)大于0,以及函數(shù)奇偶性的定義,分式不等式的解法,對(duì)數(shù)函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,兩個(gè)以O(shè)為圓心的同心圓,AB切大圓于B,AC切小圓于C,交大圓于D,E,AB=12,AO=15,AD=8,求兩圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)函數(shù)f(x)=lnx+$\frac{m}{x}$,m∈R,若對(duì)任意x2>x1>0,f(x2)-f(x1)<x2-x1恒成立,則實(shí)數(shù)m的取值范圍是[$\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)n為正整數(shù),經(jīng)計(jì)算得:f(2)>$\frac{3}{2}$,f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,f(32)>$\frac{7}{2}$,觀察上述結(jié)果,由此可推出第n個(gè)式子為f(2n)>$\frac{n+2}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知sin(α-$\frac{π}{3}$)=$\frac{15}{17}$,α∈($\frac{π}{2}$,$\frac{5}{6}$π),則sinα的值為( 。
A.$\frac{8}{17}$B.$\frac{15\sqrt{3}+8}{34}$C.$\frac{15-8\sqrt{3}}{34}$D.$\frac{15+8\sqrt{3}}{34}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知:
sin230°+sin290°+sin2150°=$\frac{3}{2}$
sin210°+sin270°+sin2130°=$\frac{3}{2}$
sin25°+sin265°+sin2125°=$\frac{3}{2}$
通過(guò)觀察上述兩等式的規(guī)律,請(qǐng)你寫(xiě)出一般性的命題,并給出的證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點(diǎn)P在棱DF上.
(1)若P是DF的中點(diǎn),求異面直線BE與CP所成角的余弦值;
(2)若二面角D-AP-C的正弦值為$\frac{\sqrt{6}}{3}$,求PF的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知$\overrightarrow{e}$1,$\overrightarrow{e}$2為平面上的單位向量,$\overrightarrow{e}$1與$\overrightarrow{e}$2的起點(diǎn)均為坐標(biāo)原點(diǎn)O,$\overrightarrow{e}$1與$\overrightarrow{e}$2夾角為$\frac{π}{3}$.平面區(qū)域D由所有滿足$\overrightarrow{OP}$=λ$\overrightarrow{e}$1+μ$\overrightarrow{e}$2的點(diǎn)P組成,其中$\left\{{\begin{array}{l}{λ+μ≤1}\\{0≤λ}\\{0≤μ}\end{array}}\right.$,那么平面區(qū)域D的面積為( 。
A.$\frac{1}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知點(diǎn)P(-1+$\sqrt{2}$cosα,$\sqrt{2}$sinα)(其中α∈[0,2π)),點(diǎn)P的軌跡記為曲線C1,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)Q在曲線C2:ρ=$\frac{1}{{\sqrt{2}cos(θ+\frac{π}{4})}}$上.
(1)求曲線C1的極坐標(biāo)方程和曲線C2的直角坐標(biāo)方程;
(2)當(dāng)ρ≥0,0≤θ<2π時(shí),求曲線C1與曲線C2的公共點(diǎn)的極坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案