10.設(shè)x>2,則$y=x+\frac{4}{x-2}$的最小值是6.

分析 變形利用基本不等式的性質(zhì)即可得出.

解答 解:∵x>2,則x-2>0,
∴$y=x+\frac{4}{x-2}$=x-2+$\frac{4}{x-2}$+2$≥2\sqrt{(x-2)•\frac{4}{x-2}}$+2=6,當(dāng)且僅當(dāng)x=4時取等號.
因此y的最小值是6.
故答案為:6.

點評 本題考查了基本不等式的性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓$C:{x^2}+{y^2}+2\sqrt{2}x-10=0$,點$A(\sqrt{2},0)$,P是圓上任意一點,線段AP的垂直平分線l和半徑CP相交于點Q.
(Ⅰ)當(dāng)點P在圓上運動時,求點Q的軌跡方程;
(Ⅱ)直線$y=kx+\sqrt{2}$與點Q的軌跡交于不同兩點A和B,且$\overrightarrow{OA}•\overrightarrow{OB}=1$(其中O為坐標(biāo)原點),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)$y=\sqrt{{{log}_{\frac{1}{2}}}{x^2}}$的單調(diào)遞增區(qū)間是[-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=ax2+2ax+4(-3<a<0),其圖象上兩點的橫坐標(biāo)為x1、x&2滿足x1<x2,且x1+x2=1+a,則由(  )
A.f(x1)<f(x2B.f(x1)=f(x2
C.f(x1)>f(x2D.f(x1)、f(x&2)的大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=x2-9,$g(x)=\frac{x}{x-3}$,那么f(x)•g(x)=x2+3x (x≠3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.判斷函數(shù)f(x)=$\frac{{\sqrt{{x^2}+1}+x-1}}{{\sqrt{{x^2}+1}+x+1}}$的奇偶性( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一個高為H,容積為V的魚缸的軸截面如圖所示,向魚缸里注水,若魚缸里的水面高度為h時,魚缸里的水的體積為V',則函數(shù)V'=f(h)的大致圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義在R上的函數(shù)f(x),滿足f(x+y)=f(x)+f(y)(x,y∈R),且f(1)=2,那么下面四個式子:
①f(1)+2f(1)+…+nf(1);
②$f[\frac{n(n+1)}{2}]$;
③n(n+1);
④n(n+1)f(1)
其中與f(1)+f(2)+…+f(n)(n∈N*)相等的是( 。
A.①③B.①②C.①②③④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四邊形ABCD為矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于點F,且點F在CE上.
(1)求證:DE⊥BE;
(2)求四棱錐E-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊答案