15、已知方程ax-x-a=0有兩個實數(shù)解,則實數(shù)a 的取值范圍是
(1,+∞)
(區(qū)間表示).
分析:方程ax-x-a=0變形為:方程ax=x+a,由題意得,函數(shù)y=ax與函數(shù)y=a+x 有兩個不同的交點,結合圖象得出結果.
解答:解:方程ax-x-a=0變形為:方程ax=x+a,
由題意得,方程ax-x-a=0有兩個不同的實數(shù)解,
即函數(shù)y=ax與函數(shù)y=a+x 有兩個不同的交點,
y=ax的圖象過定點(0,1),直線y=x+a 的圖象過定點(0,a),如圖所示:
故直線y=x+a 在y軸上的截距大于1時,函數(shù)y=ax與函數(shù)y=a+x 有兩個不同的交點
故答案為(1,+∞)
點評:本題考查方程根的個數(shù)的判斷,解答關鍵是靈活運用數(shù)形結合及轉化的數(shù)學思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知方程ax-x-a=0(a>0,a≠1)有兩個不等實根,則a的取值范圍是(  )
A、(0,1)
B、(1,+∞)
C、(0,
1
2
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程ax=x+a(a>0且a≠1)有兩解,則a的取值范圍為
a>1
a>1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知方程ax=x+a(a>0且a≠1)有兩解,則a的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知方程ax-x-a=0(a>0,a≠1)有兩個不等實根,則a的取值范圍是( 。
A.(0,1)B.(1,+∞)C.(0,
1
2
D.(1,2)

查看答案和解析>>

同步練習冊答案