【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式;

(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;

(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò)1,求的取值范圍.

【答案】1.(2.(3

【解析】試題分析:(1)當(dāng)時(shí),解對(duì)數(shù)不等式即可;(2)根據(jù)對(duì)數(shù)的運(yùn)算法則進(jìn)行化簡(jiǎn),轉(zhuǎn)化為一元二次方程,討論的取值范圍進(jìn)行求解即可;(3)根據(jù)條件得到,恒成立,利用換元法進(jìn)行轉(zhuǎn)化,結(jié)合對(duì)勾函數(shù)的單調(diào)性進(jìn)行求解即可.

試題解析:(1)由,得,解得

2, ,

當(dāng)時(shí), ,經(jīng)檢驗(yàn),滿足題意.

當(dāng)時(shí), ,經(jīng)檢驗(yàn),滿足題意.

當(dāng)時(shí), ,

是原方程的解當(dāng)且僅當(dāng),即;

是原方程的解當(dāng)且僅當(dāng),即

于是滿足題意的.綜上, 的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了了解全校學(xué)生的上網(wǎng)情況,在全校采用隨機(jī)抽樣的方法抽取了40名學(xué)生其中男女生人數(shù)恰好各占一半進(jìn)行問(wèn)卷調(diào)查,并進(jìn)行了統(tǒng)計(jì),按男女分為兩組,再將每組學(xué)生的月上網(wǎng)次數(shù)分為5組:,,,得到如圖所示的頻率分布直方圖:

寫(xiě)出的值;

在抽取的40名學(xué)生中,從月上網(wǎng)次數(shù)不少于20次的學(xué)生中隨機(jī)抽取3人 ,并用表示其中男生的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng)時(shí),求曲線點(diǎn)的切線方程;

(2)當(dāng)時(shí),若對(duì)任意,不等式成立,求實(shí)數(shù)取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高二奧賽班名學(xué)生的物理測(cè)評(píng)成績(jī)滿分120分分布直方圖如下,已知分?jǐn)?shù)在100-110的學(xué)生數(shù)有21人

1求總?cè)藬?shù)和分?jǐn)?shù)在110-115分的人數(shù)

2現(xiàn)準(zhǔn)備從分?jǐn)?shù)在110-115的名學(xué)生女生占中任選3人,求其中恰好含有一名女生的概率;

3為了分析某個(gè)學(xué)生的學(xué)習(xí)狀態(tài),對(duì)其下一階段的學(xué)生提供指導(dǎo)性建議,對(duì)他前7次考試的數(shù)學(xué)成績(jī)滿分150分,物理成績(jī)進(jìn)行分析,下面是該生7次考試的成績(jī)

數(shù)學(xué)

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

已知該生的物理成績(jī)與數(shù)學(xué)成績(jī)是線性相關(guān)的,若該生的數(shù)學(xué)成績(jī)達(dá)到130分,請(qǐng)你估計(jì)他的物理成績(jī)大約是多少?

附:對(duì)于一組數(shù)據(jù),……,其回歸線的斜率和截距的最小二乘估計(jì)分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一塊半徑為的正常數(shù))的半圓形空地,開(kāi)發(fā)商計(jì)劃征地建一個(gè)矩形的游泳池和其附屬設(shè)施,附屬設(shè)施占地形狀是等腰,其中為圓心, 在圓的直徑上, 在半圓周上,如圖.

(1)設(shè),征地面積為,求的表達(dá)式,并寫(xiě)出定義域;

(2)當(dāng)滿足取得最大值時(shí),開(kāi)發(fā)效果最佳,求出開(kāi)發(fā)效果最佳的角的值,

求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓,離心率為且過(guò)點(diǎn),過(guò)定點(diǎn)的動(dòng)直線與該橢圓相交于、兩點(diǎn).

(1)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;

(2)在軸上是否存在點(diǎn),使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為實(shí)數(shù),且,

(1)求方程的解; (2)若滿足,求證:①; (3)在(2)的條件下,求證:由關(guān)系式所得到的關(guān)于的方程存在,使

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, 底面,底面是直角梯形,

1)在上確定一點(diǎn),使得平面,并求的值;

2)在(1)條件下,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,底面是直角梯形,

(1)在上確定一點(diǎn),使得平面,并求的值;

(2)在(1)條件下,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案