F1(-1,0)、F2(1,0)是橢圓的兩焦點(diǎn),過F1的直線l交橢圓于M、N,若△MF2N的周長為8,則橢圓方程為

[  ]

A.

B.

C.

D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),點(diǎn)P(
3
3
,
11
2
)
在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)記O為坐標(biāo)原點(diǎn),過F2(1,0)的直線l與橢圓C相交于E,F(xiàn)兩點(diǎn),若△OEF的面積為
6
2
7
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),離心率為
2
2

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過點(diǎn)F且不與坐標(biāo)軸垂直的直線l交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)G,求點(diǎn)G的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一束光線從點(diǎn)F1(-1,0)出發(fā),經(jīng)直線l:x+2y+6=0上一點(diǎn)M反射后,恰好穿過點(diǎn)F2(1,0).
(1)求點(diǎn)F1關(guān)于直線l的對稱點(diǎn)F'1的坐標(biāo);
(2)求以F1、F2為焦點(diǎn)且過點(diǎn)M的橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閔行區(qū)三模)規(guī)定:直線l到點(diǎn)F的距離即為點(diǎn)F到直線l的距離,在直角坐標(biāo)平面xoy中,已知兩定點(diǎn)F1(-1,0)與F2(1,0)位于動直線l:ax+by+c=0的同側(cè),設(shè)集合P={l|點(diǎn)F1與點(diǎn)F2到直線l的距離之和等于2},Q={(x,y)|(x,y)∉l,l∈P}.則由Q中的所有點(diǎn)所組成的圖形的面積是
π
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•奉賢區(qū)二模)平面內(nèi)一動點(diǎn)P(x,y)到兩定點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離之積等于2.
(1)求△PF1F2周長的最小值;
(2)求動點(diǎn)P(x,y)的軌跡C方程,用y2=f(x)形式表示.

查看答案和解析>>

同步練習(xí)冊答案