【題目】已知無窮數(shù)列,,滿足:對(duì)任意的,都有=,=,=.記=(表示個(gè)實(shí)數(shù),,中的最大值).
(1)若=,=,=,求,,的值;
(2)若=,=,求滿足=的的所有值;
(3)設(shè),,是非零整數(shù),且,,互不相等,證明:存在正整數(shù),使得數(shù)列,,中有且只有一個(gè)數(shù)列自第項(xiàng)起各項(xiàng)均為.
【答案】(1)=,=,=.(2),,,.(3)見詳解
【解析】
(1)由題意代入分別求出,,的值;
(2)設(shè)=,的值,討論的函數(shù)表達(dá)式,進(jìn)而得出,,,,,都用表示,進(jìn)而求出所有的的值;
(3)分類討論:先,,都不為零,由題意得出矛盾;所以存在正整數(shù),使,,中至少有一個(gè)為零,再討論兩個(gè)為零得出矛盾,以此類推,即有:對(duì),=,=,=,,此時(shí)有且僅有一個(gè)數(shù)列自項(xiàng)起各項(xiàng)均為.
(1)由題意:===;===;===;以此類推,看得出=,=,=.
(2)若=,=,=,則=,=,=,
,=,
=,=,
當(dāng)時(shí),=,=,=,=,由=,得=,不符合題意.
當(dāng),=,=,=,,由=,
得=,符合題意.
當(dāng),=,=,=,
由=,得=,符合題意,
綜上的取值是:,,,.
(3)先證明:存在正整數(shù),使,,,中至少有一個(gè)為零,
假設(shè)對(duì)任意正整數(shù),
,,都不為零,由,,是非零整數(shù),且,,互不相等,得,,
若對(duì)任意,,,都不為零,則.即對(duì)任意,.
當(dāng)時(shí),=,=,=,
所以=,所以單調(diào)遞減,由為有限正整數(shù),所以必存在正整數(shù),使得,矛盾,
所以存在正整數(shù),使,,中至少有一個(gè)為零,
不妨設(shè)=,且,…,則=,且=,
否則若==,因?yàn)?/span>=,
則必有===,矛盾.
于是,=,=,且=,所以,=,
=,==,
以此類推,即有:對(duì),=,=,=,,
此時(shí)有且僅有一個(gè)數(shù)列自項(xiàng)起各項(xiàng)均為.
綜上:結(jié)論成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且點(diǎn)在函數(shù)的圖像上;
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足:,,求的通項(xiàng)公式;
(3)在第(2)問的條件下,若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面.
(Ⅰ)求證:平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值;
(Ⅲ)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是定義在R上的兩個(gè)函數(shù),滿足, 滿足,且當(dāng)時(shí),,.若在區(qū)間上,關(guān)于的方程有8個(gè)不同的實(shí)數(shù)根,則k的取值范圍是______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在實(shí)數(shù)集上的偶函數(shù)和奇函數(shù)滿足.
(1)求與的解析式;
(2)若定義在實(shí)數(shù)集上的以2為最小正周期的周期函數(shù),當(dāng)時(shí),,試求在閉區(qū)間上的表達(dá)式,并證明在閉區(qū)間上單調(diào)遞減;
(3)設(shè)(其中為常數(shù)),若對(duì)于恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李克強(qiáng)總理在很多重大場(chǎng)合都提出“大眾創(chuàng)業(yè),萬眾創(chuàng)新”.某創(chuàng)客,白手起家,2015年一月初向銀行貸款十萬元做創(chuàng)業(yè)資金,每月獲得的利潤是該月初投入資金的.每月月底需要交納房租和所得稅共為該月全部金額(包括本金和利潤)的,每月的生活費(fèi)等開支為3000元,余款全部投入創(chuàng)業(yè)再經(jīng)營.如此每月循環(huán)繼續(xù).
(1)問到2015年年底(按照12個(gè)月計(jì)算),該創(chuàng)客有余款多少元?(結(jié)果保留至整數(shù)元)
(2)如果銀行貸款的年利率為,問該創(chuàng)客一年(12個(gè)月)能否還清銀行貸款?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點(diǎn)處切線的斜率為1.
(1)求的值;
(2)設(shè),若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)對(duì)某市工薪階層關(guān)于“樓市限購令”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們?cè)率杖氲念l數(shù)分布及對(duì)“樓市限購令”贊成人數(shù)如表:
月收入(單位百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表并問是否有99%的把握認(rèn)為“月收入以5500為分界點(diǎn)”對(duì)“樓市限購令”的態(tài)度有差異;
月收入低于55百元的人數(shù) | 月收入不低于55百元的人數(shù) | 合計(jì) | |
贊成 | |||
不贊成 | |||
合計(jì) |
(Ⅱ)若采用分層抽樣在月收入在[15,25),[25,35)的被調(diào)查人中共隨機(jī)抽取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎(jiǎng)勵(lì),求收到“紅包”獎(jiǎng)勵(lì)的3人中至少有1人收入在[15,25)的概率.
參考公式:K2,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com