A. | 有極大值,無極小值 | B. | 有極小值,無極大值 | ||
C. | 既無極大值,又無極小值 | D. | 既有極大值,又有極小值 |
分析 求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性判斷函數(shù)的極值即可.
解答 解:$f'(x)=\frac{{{e^x}-3{x^3}f(x)}}{x^4}$,
設(shè)h(x)=ex-3f(x)x3,
則h'(x)=ex-3[f'(x)x3+3f(x)x2]
=${e^x}-\frac{3}{x}[{f'(x){x^4}+3f(x){x^3}}]$
=${e^x}-\frac{3}{x}•{e^x}={e^x}•\frac{x-3}{x}$,
所以h(x)≥h(3)=e3-81f(3)=0,
即f'(x)≥0,因此f(x)在(0,+∞)遞增,既無極大值,又無極小值,
故選:C.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3x-y+8=0 | B. | x-3y+8=0 | C. | 3x+y+8=0 | D. | 3x+y+4=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $2+\sqrt{2}$ | C. | $2+\sqrt{3}$ | D. | $2-\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 02 | B. | 13 | C. | 42 | D. | 44 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com