【題目】在數(shù)列中,、是給定的非零整數(shù),.
(1)若,,求;
(2)證明:從中一定可以選取無窮多項組成兩個不同的常數(shù)項.
【答案】(1)1(2)見解析
【解析】
(1)因,,,,,,,
,,,….
所以自第20項起,每三個相鄰的項周期的取值為1,1,0.
又,故.
(2)首先證明:數(shù)列必在有限項后出現(xiàn)“0”項.
假設(shè)中沒有“0”項,由于,所以當時,都有.
若,則.
若,則.
即要么比至少小1,要么比至少小1,
令,,2,3,…,則.
由于是確定的正整數(shù),這樣下去,必然存在某項,這與矛盾,
故中必有“0”項.
若第一次出現(xiàn)的“0”項為,記,
則自第項開始,每三個相鄰的項周期的取值0、、,
即,,,,1,2,…
所以數(shù)列中一定可以選取無窮多項組成兩個不同的常數(shù)列.
科目:高中數(shù)學 來源: 題型:
【題目】下列結(jié)論:
“直線l與平面平行”是“直線l在平面外”的充分不必要條件;
若p:,,則:,;
命題“設(shè)a,,若,則或”為真命題;
“”是“函數(shù)在上單調(diào)遞增”的充要條件.
其中所有正確結(jié)論的序號為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示將同心圓環(huán)均勻分成n()格.在內(nèi)環(huán)中固定數(shù)字1~n.問能否將數(shù)字1~n填入外環(huán)格內(nèi),使得外環(huán)旋轉(zhuǎn)任意格后有且僅有一個格中內(nèi)外環(huán)的數(shù)字相同?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,它的一個頂點恰好是拋物線的焦點,離心率等于.
(1)求橢圓的方程;
(2)過橢圓的右焦點作直線交橢圓于、兩點,交軸于點,若,,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓:,左頂點為,經(jīng)過點,過點作斜率為的直線交橢圓于點,交軸于點.
(1)求橢圓的方程;
(2)已知為的中點,,證明:對于任意的都有恒成立;
(3)若過點作直線的平行線交橢圓于點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中錯誤的是__________(填序號)
①命題“,有”的否定是“”,有”;
②已知, , ,則的最小值為;
③設(shè),命題“若,則”的否命題是真命題;
④已知, ,若命題為真命題,則的取值范圍是.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,直線經(jīng)過定點,直線經(jīng)過定點,且與相交于點,這兩條直線與兩坐標軸圍成的四邊形面積為.
(1)證明:,并求定點、的坐標;
(2)求三角形面積最大值,以及時的.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右兩個頂點分別為,點為橢圓上異于的一個動點,設(shè)直線的斜率分別為,若動點與的連線斜率分別為,且,記動點的軌跡為曲線.
(1)當時,求曲線的方程;
(2)已知點,直線與分別與曲線交于兩點,設(shè)的面積為,的面積為,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校有、、、四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎,在結(jié)果揭曉前,甲、乙、丙、丁四位同學對這四件參賽作品的獲獎情況預測如下.
甲說:“、同時獲獎.”
乙說:“、不可能同時獲獎.”
丙說:“獲獎.”
丁說:“、至少一件獲獎”
如果以上四位同學中有且只有兩位同學的預測是正確的,則獲獎的作品是( )
A. 作品與作品B. 作品與作品C. 作品與作品D. 作品與作品
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com