(2009•湖北模擬)已知函數(shù)f(x)=xln(ax)+ex-1在點(1,0)處切線經(jīng)過橢圓4x2+my2=4m的右焦點,則橢圓兩準(zhǔn)線間的距離為(  )
分析:求出函數(shù)的導(dǎo)函數(shù),把x=1代入導(dǎo)函數(shù)求出的函數(shù)值即為切線方程的斜率,把x=1代入函數(shù)解析式中得到切點的縱坐標(biāo),進而確定出切點坐標(biāo),根據(jù)求出的斜率和切點坐標(biāo)寫出切線方程求得m,從而求得橢圓兩準(zhǔn)線間的距離即可.
解答:解:由題意得:y′=ln(ax)+1+ex-1,
把x=1代入得:y′|x=1=lna+2,
即切線方程的斜率k=lna+2,
且把x=1代入函數(shù)解析式得:y=lna+1=0,即a=
1
e
,
則所求切線方程為:y-1=x,即y=x+1.
則橢圓4x2+my2=4m的焦點為(1,0)
∴c2=m-4=1,m=5,
∴a2=5,
∴橢圓兩準(zhǔn)線間的距離為
2a2
c
=
2×5
1
=10
故選C.
點評:此題考查橢圓的簡單性質(zhì)、學(xué)生會利用導(dǎo)數(shù)求曲線上過某點切線方程的斜率,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•湖北模擬)半徑為1的球面上有A、B、C三點,其中點A與B、C兩點間的球面距離均為
π
2
,B、C兩點間的球面距離均為
π
3
,則球心到平面ABC的距離為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•湖北模擬)已知數(shù)列{an}滿足a1=1,an+1=
1
2
an+n(n為奇數(shù))
an-2n(n為偶數(shù))
且bn=a2n-2(n∈N*
(1)求a2,a3,a4
(2)求證:數(shù)列{bn}是等比數(shù)列,并求其通項公式;
(3)若Cn=-nbn,Sn為為數(shù)列{Cn}的前n項和,求Sn-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•湖北模擬)已知命題p:|x|<2,命題q:x2-x-2<0,則p是q的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•湖北模擬)已知函數(shù)y=f(x)是R上的偶函數(shù),對于x∈R都有f(x-6)=f(x)+f(3)成立,且f(0)=-2,當(dāng)x1,x2∈[0,3],且x1≠x2時,都有
f(x1)-f(x2)x1-x2
>0.則給出下列命題:
①f(2010)=-2;
②函數(shù)y=f(x)圖象的一條對稱軸為x=-6;
③函數(shù)y=f(x)在[-9,-6]上為增函數(shù);
④方程f(x)=0在[-9,9]上有4個根.
其中正確命題的序號是
①②④
①②④
.(請將你認(rèn)為是真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•湖北模擬)若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“孿生函數(shù)”,例如解析式為y=2x2+1,值域為{9}的“孿生函數(shù)”三個:
(1)y=2x2+1,x∈{-2};(2)y=2x2+1,x∈{2};(3)y=2x2+1,x∈{-2,2}.
那么函數(shù)解析式為y=2x2+1,值域為{1,5}的“孿生函數(shù)”共有( 。

查看答案和解析>>

同步練習(xí)冊答案