若-1<loga
3
4
<1,則a的取值范圍
 
考點(diǎn):指、對(duì)數(shù)不等式的解法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:對(duì)a分類討論,利用對(duì)數(shù)函數(shù)的單調(diào)性即可得出.
解答: 解:當(dāng)a>1時(shí),∵-1<loga
3
4
<1,∴a-1
3
4
<a
,解得a>
4
3

當(dāng)1>a>0時(shí),∵-1<loga
3
4
<1,∴a-1
3
4
>a
,解得0<a<
3
4

綜上可得a的取值范圍是:(0,
3
4
)∪(
4
3
,+∞)
點(diǎn)評(píng):本題考查了對(duì)數(shù)函數(shù)的單調(diào)性、分類討論的思想方法、不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x∈R|x≥-2},集合B={x∈R|x<3},則A∩B=( 。
A、[-2,3)
B、(-2,3]
C、(-∞,-2]∪(3,+∞)
D、(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用“充分條件”和“必要條件”填空:“xy=1”是“l(fā)gx+lgy=0”的
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三棱錐的底面積為4
3
cm2,側(cè)面等腰三角形面積為6cm2,求正三棱錐側(cè)棱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若向量
a
=3
i
-4
j
,
b
=5
i
+4
j
,則(
1
3
a
-
b
)-3(
a
+
2
3
b
)+(2
b
-
1
3
a
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=1+4cosx-4sin2x(-
3
≤x≤
3
)的值域是(  )
A、[0,8]
B、[-3,5]
C、[-3,2
2
-1]
D、[-4,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=|n-10|,則滿足ak+ak+1+…+ak+7=18(k∈N*)的k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是奇函數(shù)且在(-∞,0)上是減函數(shù),f(-1)=0則不等式xf(x)<0的解集為( 。
A、(-∞,-1)∪(1,+∞)
B、(-1,0)∪(0,1)
C、(-1,0)∪(1,+∞)
D、(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x-x2(0≤x≤3)的值域是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案