如圖,在多面體ABCDEF中,四邊形ABCD是正方形,F(xiàn)A⊥平面ABCD,EF∥BC,F(xiàn)A=2,AD=3,∠ADE=45°,點(diǎn)G是FA的中點(diǎn).
(1)求證:EG⊥平面CDE;
(2)求二面角B-CE-G的余弦值.

證明:(1)∵EF∥BC,AD∥BC,∴EF∥AD.
在四邊形ADEF中,由FA=2,AD=3,∠ADE=45°,可證得EG⊥DE,
又由FA⊥平面ABCD,得AF⊥CD,
∵正方形ABCD中CD⊥AD,∴CD⊥平面ADEF,
∵EG?平面ADEF,∴CD⊥EG,
∵CD∩DE=D,∴EG⊥平面CDE;…(6分)
(2)以AB、AD、AF為x、y、z軸建立空間直角坐標(biāo)系,
則B(3,0,0)、C(3,3,0)、E(0,1,2)、G(0,1,1).
、,
分別求得平面BCE與平面CEG的一個(gè)法向量,,
向量的夾角的余弦值為
∴二面角B-CE-G的余弦值為
分析:(1)由正方形的性質(zhì),及FA⊥平面ABCD,可得AF⊥CD,CD⊥AD,結(jié)合線面垂直的判定定理得到CD⊥平面ADEF,則CD⊥EG,由FA=2,AD=3,∠ADE=45°,可證得EG⊥DE,進(jìn)而再由線面垂直的判定定理得到EG⊥平面CDE;
(2)以AB、AD、AF為x、y、z軸建立空間直角坐標(biāo)系,分別求出平面BDE與平面CEG的法向量,代入向量夾角公式即可得到答案.
點(diǎn)評:本題考查的知識點(diǎn)是二面角的平面角及求法,直線與平面垂直的判定,其中(1)的關(guān)鍵,是證得CD⊥EG,EG⊥DE,(2)的關(guān)鍵是建立空間坐標(biāo)系,將二面角問題轉(zhuǎn)化為向量夾角問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1
.
BB1AB=AC=AA1=
2
2
BC,B1C1
.
1
2
BC

(1)求證:A1B1⊥平面AA1C;
(2)求證:AB1∥平面A1C1C;
(3)求二面角C1-A1C-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB
B1C1
.
.
1
2
BC
,二面角A1-AB-C是直二面角.
(Ⅰ)求證:AB1∥平面 A1C1C;
(Ⅱ)求BC與平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•合肥一模)如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
2
2
BC
,B1C1∥=
1
2
BC

(1)求證:A1B1⊥平面AA1C;
(2)若D是BC的中點(diǎn),求證:B1D∥平面A1C1C;
(3)若BC=2,求幾何體ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鄭州二模)如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB,B1C1
.
1
2
BC
,二面角A1-AB-C是直二面角.
(I)求證:A1B1⊥平面AA1C; 
(II)求證:AB1∥平面 A1C1C;
(II)求BC與平面A1C1C所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案