sin15°cos30°sin75°的值等于
 
考點:二倍角的正弦
專題:三角函數(shù)的求值
分析:將所求關系式變形為:sin15°cos30°sin75°=
23sin15°cos15°cos30°sin75°
23cos15°
,反復利用二倍角的正弦公式,即可求得答案.
解答: 解:sin15°cos30°sin75°=
23sin15°cos15°cos30°sin75°
23cos15°
=
22sin30°cos30°sin75°
23cos15°
=
21sin60°sin75°
23cos15°
=
3
8

故答案為:
3
8
點評:本題考查二倍角的正弦,考查轉(zhuǎn)化思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
a
=(4,2)
是直線l的方向向量,直線l的傾斜角為α,則
2
cos2α+sin2α+1
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓的對稱中心在坐標原點,一個頂點為A(0,2),右焦點F與點B(
2
2
)的距離為2,則橢圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,在(0,+∞)上是單調(diào)遞增的偶函數(shù)的是( 。
A、y=cosx
B、y=x3
C、y=ex+e-x
D、y=log
1
2
x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列各題的值.
(1)已知函數(shù)f(x)=ax+a-x(a>0,a≠1),且f(1)=3,計算f(0)+f(1)+f(2)的值;
(2)設2a=5b=m,且
1
a
+
1
b
=1,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,已知向量
a
=(x,y-
2
),
b
=(kx,y+
2
)(k∈R),
a
b
,動點M(x,y)的軌跡為T.
(1)求軌跡T的方程,并說明該方程表示的曲線的形狀;
(2)當k=
1
2
時,已知點B(0,-
2
),是否存在直線l:y=x+m,使點B關于直線l的對稱點落在軌跡T上?若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某城市缺水問題比較突出,為了制定節(jié)水管理辦法,對全市居民某年的月均用水量進行了抽樣調(diào)查,其中n位居民的月均用水量分別為x1,…,xn(單位:噸).根據(jù)圖所示的程序框圖,若n=2,且x1,x2分別為1,2,則輸出的結(jié)果s為.( 。
A、1
B、
3
2
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,角A,B,C所對的邊分別為a,b,c,若1+
tanA
tanB
=
2c
b
,則A=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的是( 。
A、若向量
a
與向量
b
的方向相反,則稱向量
a
為向量
b
的相反向量
B、若向量
a
與向量
b
的模相等,則稱向量
a
與向量
b
為相等向量
C、若向量
a
的模等于0,則向量
a
等于0
D、若向量
a
是單位向量,則向量
a
的模等于1

查看答案和解析>>

同步練習冊答案