16.已知數(shù)列{an}是首項(xiàng)為1,公差為2的等差數(shù)列,將數(shù)列{an}中的各項(xiàng)排成如圖所示的一個(gè)三角形數(shù)表,記A(i,j)表示第i行從左至右的第j個(gè)數(shù),例如A(4,3)=a9,則A(10,2)=93.

分析 觀察發(fā)現(xiàn):數(shù)陣由連續(xù)的項(xiàng)的排列構(gòu)成,且第m行有m個(gè)數(shù),根據(jù)等差數(shù)列求和公式,得出A(10,6)是數(shù)陣中第幾個(gè)數(shù)字,即時(shí)數(shù)列{an}中的相序,再利用通項(xiàng)公式求出.

解答 解:由數(shù)陣可知,S(10,2)是數(shù)陣當(dāng)中第1+2+3+…+9+2=47個(gè)數(shù)據(jù),
也是數(shù)列{an}中的第47項(xiàng),
而a47=2×47-1=93,
所以S(10,2)對應(yīng)于數(shù)陣中的數(shù)是93,
故答案為:93.

點(diǎn)評 本題是規(guī)律探究型題目,此題要發(fā)現(xiàn)各行的數(shù)字個(gè)數(shù)和行數(shù)的關(guān)系,從而進(jìn)行分析計(jì)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=($\sqrt{3}$,1),則$\overrightarrow{a}$與$\overrightarrow$夾角的大小為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a>0,b>0,若不等式$\frac{mab}{3a+b}≤a+3b$恒成立,則m的最大值為( 。
A.4B.4C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某公司從1999年的年產(chǎn)值100萬元,增加到10年后2009年的500萬元,如果每年產(chǎn)值增長率相同,則每年的平均增長率是多少?(ln(1+x)≈x,lg2=0.3,ln10=2.30)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線y=3-x與兩坐標(biāo)軸圍成的區(qū)域?yàn)棣?SUB>1,不等式組$\left\{\begin{array}{l}y≤3-x\\ x≥0\\ y≥2x\end{array}\right.$所形成的區(qū)域?yàn)棣?SUB>2,現(xiàn)在區(qū)域Ω1中隨機(jī)放置一點(diǎn),則該點(diǎn)落在區(qū)域Ω2的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在正方體ABCD-A1B1C1D1中,M和N分別為A1B1和B1C1的中點(diǎn),那么直線AM與CN所成角的余弦值是    (  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知R為實(shí)數(shù)集,集合A={1,2,3,4,5},B={x|x(4-x)<0},則A∩(∁RB)={1,2,3,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知P(x,y)是圓(x+1)2+y2=1上一點(diǎn),則2x+3y的最大值為$\sqrt{13}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$E:\frac{x^2}{4}+{y^2}=1$的左右頂點(diǎn)分別為A,B,點(diǎn)P為橢圓上異于A,B的任意一點(diǎn).
(Ⅰ)求直線PA與PB的斜率之積;
(Ⅱ)過點(diǎn)Q(-1,0)作與x軸不重合的直線交橢圓E于M,N兩點(diǎn).問:是否存在以MN為直徑的圓經(jīng)過點(diǎn)A,若存在,請求出直線MN.若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案