12.設(shè)函數(shù)f(x)=$\sqrt{{e}^{x}+ax-2}$,其中a>0,若存在實(shí)數(shù)x0∈[1,2],使f[f(x0)]=x0,則a的取值范圍是(0,3-e].

分析 根據(jù)反函數(shù)的定義將問(wèn)題進(jìn)行轉(zhuǎn)化,再將解方程問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題,從而求出a的取值范圍.

解答 解:函數(shù)f(x)=$\sqrt{{e}^{x}+ax-2}$,其中a>0,
若存在實(shí)數(shù)x0∈[1,2],使f[f(x0)]=x0
則存在x0∈[1,2],使得f(x0)=f-1(x0),
即函數(shù)f(x)與其反函數(shù)f-1(x)在[1,2]上有交點(diǎn);
∵f(x)=$\sqrt{{e}^{x}+ax-2}$(a>0)在[1,2]上為增函數(shù),
∴函數(shù)f(x)與其反函數(shù)f-1(x)在[1,2]的交點(diǎn)在直線y=x上,
即函數(shù)f(x)與其反函數(shù)f-1(x)的交點(diǎn)就是f(x)與y=x的交點(diǎn);
令:$\sqrt{{e}^{x}+ax-2}$=x,則方程在[1,2]上一定有解,
∴a=$\frac{{x}^{2}+2{-e}^{x}}{x}$,
設(shè)g(x)=x2+2-ex,x∈[1,2];
則g′(x)=2x-ex<0,∴g(x)在x∈[1,2]上是單調(diào)減函數(shù),
∴a的最小值為$\frac{4+2{-e}^{2}}{2}$=3-$\frac{{e}^{2}}{2}$<0,最大值為3-e;
綜上,a的取值范圍是(0,3-e].
故答案為:(0,3-e].

點(diǎn)評(píng) 本題主要考查了函數(shù)與方程以及導(dǎo)數(shù)的綜合運(yùn)用問(wèn)題,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖,圓O內(nèi)有一個(gè)內(nèi)接三角形ABC,且直徑AB=2,∠ABC=45°,在圓O內(nèi)隨機(jī)撒一粒黃豆,則它落在三角形ABC內(nèi)(陰影部分)的概率是( 。
A.$\frac{1}{2π}$B.$\frac{\sqrt{2}}{2π}$C.$\frac{\sqrt{3}}{2π}$D.$\frac{1}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知正項(xiàng)數(shù)列{an}滿足an+1-a1=(a2-1)Sn(n∈N*),其中Sn 為數(shù)列{an}的前n項(xiàng)和,a2=t
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:${S_n}≤\frac{{n({a_1}+{a_n})}}{2}$,并指出等號(hào)成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.(x-$\frac{1}{x}$)6展開(kāi)式中x2的系數(shù)為( 。
A.-15B.15C.-20D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某學(xué)校研究性學(xué)習(xí)小組對(duì)該校高二(1)班n名學(xué)生視力情況進(jìn)行調(diào)查,得到如圖所的頻率分布直方圖,已知視力在4.0~4.4范圍內(nèi)的學(xué)生人數(shù)為24人,視力在5.0~5.2范圍內(nèi)為正常視力,視力在3.8~4.0范圍內(nèi)為嚴(yán)重近視.
(1)求a,n的值;
(2)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績(jī)突出的學(xué)生近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績(jī)是否有關(guān)系,對(duì)班級(jí)名次在前10名和后10名的學(xué)生進(jìn)行了調(diào)查,得到如表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為視力與學(xué)習(xí)成績(jī)有關(guān)系?
(3)若先按照分層抽樣在正常視力和嚴(yán)重近視的學(xué)生中抽取6人進(jìn)一步調(diào)查他們用眼習(xí)慣,再?gòu)倪@6人中隨機(jī)抽取2人進(jìn)行保護(hù)視力重要性的宣傳,求視力正常人數(shù)ξ的分布列和期望.
是否近視/年級(jí)名次前10名后10名
近視97
不近視13
附:
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若執(zhí)行如圖所示的程序圖,則運(yùn)行后輸出的結(jié)果是( 。
A.3B.-3C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若復(fù)數(shù)(1-i)(2+ai)是實(shí)數(shù),則實(shí)數(shù)a等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,$-\frac{π}{2}<φ<\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{2π}{3}$對(duì)稱(chēng),它的周期是π,則以下命題錯(cuò)誤的是( 。
A.f(x)的圖象過(guò)點(diǎn)$(0,\frac{1}{2})$B.f(x)在$[{\frac{5π}{12},\frac{2π}{3}}]$上是減函數(shù)
C.f(x)的一個(gè)對(duì)稱(chēng)中心是點(diǎn)$({\frac{5π}{12},0})$D.f(x)的最大值為A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.指出下列命題的構(gòu)成形式,并寫(xiě)出構(gòu)成它的命題.
(1)36是6與18的倍數(shù);
(2)x=1不是方程x2+3x-4=0的根.

查看答案和解析>>

同步練習(xí)冊(cè)答案