分析 (Ⅰ)利用三角恒等變換,化簡函數(shù)f(x)的解析式,再利用正弦函數(shù)的單調(diào)性,求得函數(shù)f(x)的單調(diào)區(qū)間.
(Ⅱ)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,再利用正弦函數(shù)的定義域和值域,求得g(x)在區(qū)間[-$\frac{π}{2}$,0]上的最小值和最大值.
解答 解:(Ⅰ)∵函數(shù)f(x)=1+2$\sqrt{3}$sinxcosx-2sin2x=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$),
(Ⅰ)令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,可得函數(shù)f(x)的單調(diào)增區(qū)間為[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z;
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,可得函數(shù)f(x)的單調(diào)減區(qū)間為[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.
(Ⅱ)若把函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位得到函數(shù)g(x)=2sin[2(x-$\frac{π}{6}$)+$\frac{π}{6}$]=2sin(2x-$\frac{π}{6}$)的圖象,
∵x∈[-$\frac{π}{2}$,0],∴2x-$\frac{π}{6}$∈[-$\frac{7π}{6}$,-$\frac{π}{6}$],∴sin(2x-$\frac{π}{6}$)∈[-1,$\frac{1}{2}$],∴g(x)=2sin(2x-$\frac{π}{6}$)∈[-2,1].
故g(x)在區(qū)間$[{-\frac{π}{2},0}]$上的最小值為-2,最大值為1.
點(diǎn)評 本題主要考查三角恒等變換,正弦函數(shù)的單調(diào)性,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的定義域和值域,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | Sn | B. | Sn+1 | C. | S2n+1 | D. | S2n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | $\sqrt{2}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4\sqrt{3}}{3}$ | B. | ±$\frac{4\sqrt{3}}{3}$ | C. | 4$\sqrt{3}$ | D. | ±4$\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com