【題目】甲廠根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為3萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本),銷售收入R(x)= ,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入﹣總成本);
(2)甲廠生產(chǎn)多少臺新產(chǎn)品時,可使盈利最多?
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點,求實數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(3)當a=﹣ 時,方程f(1﹣x)= 有實根,求實數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】專家研究表明,2.5是霾的主要成份,在研究2.5形成原因時,某研究人員研究了2.5與燃燒排放的、、、等物質(zhì)的相關(guān)關(guān)系.下圖是某地某月2.5與和相關(guān)性的散點圖.
(Ⅰ)根據(jù)上面散點圖,請你就,對2.5的影響關(guān)系做出初步評價;
(Ⅱ)根據(jù)有關(guān)規(guī)定,當排放量低于時排放量達標,反之為排放量超標;當2.5值大于時霧霾嚴重,反之霧霾不嚴重.根據(jù)2.5與相關(guān)性的散點圖填寫好下面列聯(lián)表,并判斷有多大的把握認為“霧霾是否嚴重與排放量有關(guān)”:
霧霾不嚴重 | 霧霾嚴重 | 總計 | |
排放量達標 | |||
排放量超標 | |||
總計 |
(Ⅲ)我們知道霧霾對交通影響較大.某市交通部門發(fā)現(xiàn),在一個月內(nèi),當排放量分別是60,120,180時,某路口的交通流量(單位:萬輛)一次是800,600,200,而在一個月內(nèi),排放量是60,120,180的概率一次是,,(),求該路口一個月的交通流量期望值的取值范圍.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若偶函數(shù)f(x)在(﹣∞,﹣1]上是增函數(shù),則下列關(guān)系式中成立的是( )
A.f(﹣ )<f(﹣1)<f(2)
B.f(﹣1)<f(﹣ )<f(2)??
C.f(2)<f(﹣1)<f(﹣ )
D.f(2)<f(﹣ )<f(﹣1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:參數(shù)方程與極坐標系
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù), 為傾斜角),以坐標原點O為極點, 軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為
(1)求曲線的直角坐標方程,并 求C的焦點F的直角坐標;
(2)已知點,若直線與C相交于A,B兩點,且,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線在平面直角坐標系下的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系.
(1)求曲線的普通方程及極坐標方程;
(2)直線的極坐標方程是,射線: 與曲線交于點與直線交于點,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列不等關(guān)系正確的是( )
A.( ) <34<( )﹣2
B.( )﹣2<( ) <34
C.(2.5)0<( )2.5<22.5
D.( )2.5<(2.5)0<22.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com