【題目】如圖,四棱錐中,底面是平行四邊形, , 平面底面,且是邊長(zhǎng)為的等邊三角形, , 點(diǎn).

(1)求證:平面平面;

(2)證明: , 且的面積相等.

【答案】(1)見(jiàn)解析(2)見(jiàn)解析

【解析】試題分析:(1)由正三角形性質(zhì)得PM⊥AD,再根據(jù)面面垂直性質(zhì)定理得PM⊥底面ABCD即得PM⊥BM利用勾股定理得BM⊥AD,最后根據(jù)線(xiàn)面垂直判定定理得BM⊥平面PAD由面面垂直判定定理得結(jié)論(2)利用余弦定理求兩角余弦值,結(jié)合余弦函數(shù)單調(diào)性確定兩角大小,根據(jù)三角形面積公式計(jì)算面積,可證相等

試題解析: 解:(1) PAD是邊長(zhǎng)為2的等邊三角形, MAD中點(diǎn)

PMAD, PM平面PAD

又平面PAD⊥底面ABCD PM⊥底面ABCD

平面PAD∩底面ABCD=AD

BM底面ABCD, PMBM, PMB是直角三角形

在等邊PAD中,PM=,又PB=, MB=

∠BAD=60, 在△ABM, 由余弦定理:MB2 = AM2+AB2-2AM×AB×cos60

得:AB2 - AB -2=0, AB=2 ABD也是等邊三角形,

BMAD

平面PAD∩底面ABCD=AD BM⊥平面PAD

BM底面ABCD BM平面PMB 平面PMB⊥平面PAD

知底面ABCD是菱形. 連接CM, 在△DMC中,∠MDC=120,

由余弦定理:MC2 = MD2+CD2-2MD×CD×cos120 =12+ 22-2×1×2×=7

得: MC=, 在直角形△PMC中, PC2 =PM2+MC2=

在△PDC中,由余弦定理:

在△PAB中,由余弦定理:

, ,余弦函數(shù)在是減函數(shù)

PDC >PAB,

,

,即△PDC與△PAB面積相等.

(注:沒(méi)有通過(guò)計(jì)算出面積,能夠說(shuō)明面積相等原因的,仍然是滿(mǎn)分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的焦點(diǎn)的坐標(biāo)為, 的坐標(biāo)為且經(jīng)過(guò)點(diǎn) .

1)求橢圓的方程;

(2)設(shè)過(guò)的直線(xiàn)與橢圓交于兩不同點(diǎn),在橢圓上是否存在一點(diǎn),使四邊形為平行四邊形?若存在,求出直線(xiàn)的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在小明的婚禮上,為了活躍氣氛,主持人邀請(qǐng)10位客人做一個(gè)游戲.第一輪游戲中,主持人將標(biāo)有數(shù)字1,2,…,10的十張相同的卡片放入一個(gè)不透明箱子中,讓客人依次去摸,摸到數(shù)字6,7,…,10的客人留下,其余的淘汰,第二輪放入1,2,…,5五張卡片,讓留下的客人依次去摸,摸到數(shù)字3,4,5的客人留下,第三輪放入1,2,3三張卡片,讓留下的客人依次去摸,摸到數(shù)字2,3的客人留下,同樣第四輪淘汰一位,最后留下的客人獲得小明準(zhǔn)備的禮物.已知客人甲參加了該游戲.

(1)求甲拿到禮物的概率;

(2)設(shè)表示甲參加游戲的輪數(shù),求的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,圓的圓心坐標(biāo)為,半徑為2.以極點(diǎn)為原點(diǎn),極軸為的正半軸,取相同的長(zhǎng)度單位建立平面直角坐標(biāo)系,直線(xiàn)的參數(shù)方程為為參數(shù)).

(1)求圓的極坐標(biāo)方程;

(2)設(shè)與圓的交點(diǎn)為, 軸的交點(diǎn)為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn), ,則下列說(shuō)法正確的是( )

A. 上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向右平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)

B. 上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向右平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)

C. 把曲線(xiàn)向右平移個(gè)單位長(zhǎng)度,再把得到的曲線(xiàn)上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到曲線(xiàn)

D. 把曲線(xiàn)向右平移個(gè)單位長(zhǎng)度,再把得到的曲線(xiàn)上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到曲線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(1)解不等式

(2)若關(guān)于的方程的解集為空集,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, 是正三角形, 是等腰三角形, ,

(1)求證:

(2)若, ,平面平面,直線(xiàn)與平面所成的角為45°,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的左、右焦點(diǎn)分別為、,設(shè)點(diǎn),在中, ,周長(zhǎng)為.

1)求橢圓的方程;

2)設(shè)不經(jīng)過(guò)點(diǎn)的直線(xiàn)與橢圓相交于、兩點(diǎn),若直線(xiàn)的斜率之和為,求證:直線(xiàn)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);

3)記第(2)問(wèn)所求的定點(diǎn)為,點(diǎn)為橢圓上的一個(gè)動(dòng)點(diǎn),試根據(jù)面積的不同取值范圍,討論存在的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右有頂點(diǎn)分別是、,上頂點(diǎn)是,圓的圓心到直線(xiàn)的距離是,且橢圓的右焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合.

(Ⅰ)求橢圓的方程;

(Ⅱ)平行于軸的動(dòng)直線(xiàn)與橢圓和圓在第一象限內(nèi)的交點(diǎn)分別為、,直線(xiàn)、軸的交點(diǎn)記為,.試判斷是否為定值,若是,證明你的結(jié)論.若不是,舉反例說(shuō)明.

查看答案和解析>>

同步練習(xí)冊(cè)答案