在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過(guò)點(diǎn)的直線的參數(shù)方程為:,(t為參數(shù)),直線與曲線分別交于兩點(diǎn).
(1)寫出曲線和直線的普通方程;
(2)若成等比數(shù)列,求的值.

(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.

解析試題分析:
(1)本小題首先根據(jù)圓的極坐標(biāo)方程可得,再根據(jù)直線的參數(shù)方程為:,(t為參數(shù))可得
(2)本小題主要根據(jù)直線與圓相交,通過(guò)根與系數(shù)的關(guān)系可得然后根據(jù)成等比數(shù)列,可建立參數(shù)的目標(biāo)等式,解之即可。
試題解析:
(1)根據(jù)圓的極坐標(biāo)方程可得
同理根據(jù)直線的參數(shù)方程為:,(t為參數(shù))可得
(2)直線的參數(shù)方程為:,(t為參數(shù))
代入到,可得
則有
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/30/a/10tdd3.png" style="vertical-align:middle;" />
解得
考點(diǎn):1.圓的極坐標(biāo)方程;2.直線的參數(shù)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為
(1)求圓的直角坐標(biāo)方程;
(2)若是直線與圓面的公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù)).若直線與圓相切,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知極坐標(biāo)的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的正半軸重合,且長(zhǎng)度單位相同.直線的極坐標(biāo)方程為:,點(diǎn),參數(shù)
(Ⅰ)求點(diǎn)軌跡的直角坐標(biāo)方程;(Ⅱ)求點(diǎn)到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線C的極坐標(biāo)方程為,直線的參數(shù)方程為( t為參數(shù),0≤).
(Ⅰ)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說(shuō)明曲線C的形狀;
(Ⅱ)若直線經(jīng)過(guò)點(diǎn)(1,0),求直線被曲線C截得的線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建坐標(biāo)系,已知曲線,已知過(guò)點(diǎn)的直線的參數(shù)方程為 (為參數(shù)),直線與曲線分別交于兩點(diǎn).
(Ⅰ)寫出曲線和直線的普通方程;
(Ⅱ)若成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系中,圓的參數(shù)方程為參數(shù)).以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓的極坐標(biāo)方程;
(Ⅱ)直線的極坐標(biāo)方程是,射線與圓的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在極坐標(biāo)系中,已知圓的圓心,半徑.
(Ⅰ)求圓的極坐標(biāo)方程;
(Ⅱ)若,直線的參數(shù)方程為為參數(shù)),直線交圓兩點(diǎn),求弦長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知⊙O1和⊙O2的極坐標(biāo)方程分別是=2cos="2a" sin是非零常數(shù)).
(1)將兩圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若兩圓的圓心距為,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案