1.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右頂點(diǎn)為E,過雙曲線的左焦點(diǎn)且垂直于x軸的直線與該雙曲線相交于A、B兩點(diǎn),若∠AEB=90°,則該雙曲線的離心率e是( 。
A.$\frac{{\sqrt{5}+1}}{2}$B.2C.$\frac{{\sqrt{5}+1}}{2}$或2D.不存在

分析 求得雙曲線的右頂點(diǎn),設(shè)出左焦點(diǎn),將x=-c代入雙曲線方程,求得交點(diǎn)A,B的坐標(biāo),再由題意可得kAE•kBE=-1,運(yùn)用斜率公式和離心率公式計(jì)算即可得到所求值.

解答 解:雙曲線的右頂點(diǎn)為E(a,0),
設(shè)雙曲線的左焦點(diǎn)為(-c,0),
將x=-c代入雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,
可得y2=b2($\frac{{c}^{2}}{{a}^{2}}$-1)=$\frac{^{4}}{{a}^{2}}$,
即y=±$\frac{^{2}}{a}$,
即有A(-c,$\frac{^{2}}{a}$),B(-c,-$\frac{^{2}}{a}$),
由∠AEB=90°,可得kAE•kBE=-1,
即為$\frac{\frac{^{2}}{a}}{-c-a}$•$\frac{-\frac{^{2}}{a}}{-c-a}$=-1,
化為a(c+a)=b2,
由b2=c2-a2=(c-a)(c+a),
可得c-a=a,即c=2a,
則e=$\frac{c}{a}$=2.
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的方程和性質(zhì),主要是離心率的求法,注意運(yùn)用方程思想和兩直線垂直的條件:斜率之積為-1,考查化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知數(shù)列{an}的前n項(xiàng)和為Sn,且${a_1}=1,{S_n}=\frac{{({n+1}){a_n}}}{2}$,則a2017=( 。
A.2016B.2017C.4032D.4034

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知A、B、C是圓O上的三個(gè)點(diǎn),CO的延長線與線段BA的延長線交于圓外一點(diǎn).若$\overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB}$,其中m,n∈R.則m+n的取值范圍是( 。
A.(0,1)B.(-1,0)C.(1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$\overrightarrow a=({1,0,2})$,$\overrightarrow b=({-1,1,0})$,$\overrightarrow c=({-1,y,2})$,若$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$三向量共面,則實(shí)數(shù)y的值為( 。
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某班級(jí)將從甲、乙兩位同學(xué)中選派一人參加數(shù)學(xué)競賽,老師對(duì)他們平時(shí)的5次模擬測試成績(滿分:100分)進(jìn)行了記錄,其統(tǒng)計(jì)數(shù)據(jù)的莖葉圖如圖所示,已知甲、乙兩位同學(xué)的平均成績都為90分.
(Ⅰ)求出a,b的值;
(Ⅱ)分別計(jì)算這兩組數(shù)據(jù)的方差,并根據(jù)統(tǒng)計(jì)學(xué)知識(shí),請(qǐng)你判斷選派哪位學(xué)生參加合適?
(Ⅲ)從甲同學(xué)的5次成績中任取兩次,若兩次成績的平均分大于90,則稱這兩次成績?yōu)椤皟?yōu)秀組合”,求甲同學(xué)的兩次成績?yōu)椤皟?yōu)秀組合”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.《張丘建算經(jīng)》是我國南北朝時(shí)期的一部重要數(shù)學(xué)著作,書中系統(tǒng)的介紹了等差數(shù)列,同類結(jié)果在三百多年后的印度才首次出現(xiàn).書中有這樣一個(gè)問題,大意為:某女子善于織布,后一天比前一天織的快,而且每天增加的數(shù)量相同,已知第一天織布5尺,一個(gè)月(按30天計(jì)算)總共織布585尺,問每天增加的數(shù)量為多少尺?該問題的答案為( 。
A.$\frac{1}{2}$尺B.$\frac{2}{3}$尺C.1尺D.$\frac{3}{2}$尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=1+lgx+$\frac{9}{lgx}$(0<x<1)的最大值是-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,△ABC中,$\frac{CD}{DA}=\frac{AE}{EB}=\frac{1}{2}$,記$\overrightarrow{BC}=\overrightarrow{a,}\overrightarrow{CA}=\overrightarrow b$,則$\overrightarrow{DE}$=$\frac{1}{3}(\overrightarrow b-\overrightarrow a)$.(用$\overrightarrow a$和$\overrightarrow b$表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$是平面上的三個(gè)單位向量,且$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$,則(2$\overrightarrow{a}$+$\overrightarrow{c}$)•($\overrightarrow$-$\overrightarrow{c}$)的最小值是( 。
A.-2B.-1C.-$\sqrt{3}$D.0

查看答案和解析>>

同步練習(xí)冊(cè)答案