設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且bcosC=(2a-c)cosB.
(Ⅰ)求B的大;
(Ⅱ)若b=
3
,則a+c的最大值.
考點(diǎn):余弦定理,正弦定理
專題:解三角形
分析:(Ⅰ)已知等式利用正弦定理化簡,再利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式化簡,求出cosB的值,即可確定出B的度數(shù);
(Ⅱ)利用余弦定理列出關(guān)系式,將b,cosB的值代入,并利用基本不等式求出a+c的最大值即可.
解答: 解:(Ⅰ)將已知等式bcosC=(2a-c)cosB,
利用正弦定理得sinBcosC=(2sinA-sinC)cosB,
整理得:sinBcosC+sinCcosB=2sinAcosB,
∴sin(B+C)=2sinAcosB,
又sin(B+C)=sinA≠0,
∴cosB=
1
2
,
又0<B<π,
∴B=
π
3
;
(Ⅱ)∵b=
3
,cosB=
1
2

∴由余弦定理可知b2=a2+c2-2accosB,即3=a2+c2-ac=(a+c)2-3ac≥(a+c)2-3(
a+c
2
2,即a+c≤2
3
,
當(dāng)且僅當(dāng)a=c=
3
時(shí)取等號,
則a+c的最大值為2
3
點(diǎn)評:此題考查了正弦、余弦定理,以及基本不等式的運(yùn)用,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

與同一平面平行的兩條直線(  )
A、平行B、相交
C、異面D、平行或相交或異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+3ax2+3bx+c在x=2處有極值,且其圖象在x=1處的切線與直線6x+2y+5=0平行.
(1)求f(x)的解析式(含字母c);
(2)求函數(shù)的極大值與極小值的差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)訄AP與圓O1:x2-4x+y2+3=0外切,與直線l:x=-1相切,動(dòng)圓圓心P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)通過(1,0)的直線與曲線C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若AO,BO所在直線分別與直線y=x+4交于點(diǎn)E、F,求|EF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用循環(huán)語句描述計(jì)算1+
1
2
+
1
22
+
1
23
+…+
1
29
的值的一個(gè)程序,要求寫出算法,并用基本語句編寫程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
a(x-1)
x
(x>0,a∈R)

(1)試求f(x)的單調(diào)區(qū)間;
(2)求證:不等式
1
lnx
-
1
x-1
1
2
對于x∈(1,2)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四個(gè)數(shù)依次成等差數(shù)列,且四個(gè)數(shù)的平方和為94,首尾兩數(shù)之積比中間兩數(shù)之積少18,求此等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-3x2+ax(a∈R).
(1)當(dāng)a=-9時(shí),求函數(shù)f(x)的極大值;
(2)當(dāng)a<3時(shí),試求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)若函數(shù)f(x)的圖象與函數(shù)φ(x)=-xlnx的圖象有三個(gè)不同的交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x-e
x
a
(a>0)

(1)曲線y=f(x)在x=0處的切線恰與直線x-2y+1=0垂直,求a的值;
(2)若x∈[a,2a]求f(x)的最大值;
(3)若f(x1)=f(x2)=0(x1<x2),求證:
x1
x2
e
a

查看答案和解析>>

同步練習(xí)冊答案