【題目】設圓C1:x2+y2﹣10x+4y+25=0與圓C2:x2+y2﹣14x+2y+25=0,點A,B分別是C1,C2上的動點,M為直線y=x上的動點,則|MA|+|MB|的最小值為( )
A.3B.3C.5D.5
科目:高中數(shù)學 來源: 題型:
【題目】為了引導居民合理用電,國家決定實行合理的階梯電價,居民用電原則上以住宅為單位(一套住宅為一戶).
階梯級別 | 第一階梯 | 第二階梯 | 第三階梯 |
月用電范圍(度) | (0,210] | (210,400] |
某市隨機抽取10戶同一個月的用電情況,得到統(tǒng)計表如下:
居民用電戶編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
用電量(度) | 53 | 86 | 90 | 124 | 132 | 200 | 215 | 225 | 300 | 410 |
若規(guī)定第一階梯電價每度0.5元,第二階梯超出第一階梯的部分每度0.6元,第三階梯超出第二階梯的部分每度0.8元,試計算A居民用電戶用電410度時應電費多少元?
現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯電量的戶數(shù)的分布列與期望;
以表中抽到的10戶作為樣本估計全市的居民用電,現(xiàn)從全市中依次抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某綠色有機水果店中一款有機草莓味道鮮甜,店家每天以每斤元的價格從農(nóng)場購進適量草莓,然后以每斤元的價格出售,如果當天賣不完,剩下的草莓由果汁廠以每斤元的價格回收.
(1)若水果店一天購進斤草莓,求當天的利潤(單位:元)關于當天需求量(單位:斤,)的函數(shù)解析式;
(2)水果店記錄了天草莓的日需求量(單位:斤),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 14 | 22 | 14 | 16 | 15 | 13 | 6 |
①假設水果店在這天內每天購進斤草莓,求這天的日利潤(單位:元)的平均數(shù);
②若水果店一天購進斤草莓,以天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為R上的偶函數(shù),當時當時,且對恒成立,函數(shù)的一個周期內的圖像與函數(shù)的圖像恰好有兩個公共點,則 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】兩圓(圓心,半徑),與(圓心,半徑)不是同心圓,方程相減(消去二次項)得到的直線叫做圓 與圓的根軸;
(1)求證:當與相交于A,B兩點時,所在直線為根軸;
(2)對根軸上任意點P,求證:;
(3)設根軸與交于點H,,求證:H分的比;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司租賃甲、乙兩種設備生產(chǎn)、兩類產(chǎn)品,甲種設備每天能生產(chǎn)類產(chǎn)品件和類產(chǎn)品件,乙種設備每天能生產(chǎn)類產(chǎn)品件和類產(chǎn)品件.已知設備甲每天的租賃費為元,設備乙每天的租賃費為元,現(xiàn)該公司至少要生產(chǎn)類產(chǎn)品件,類產(chǎn)品件,求所需租賃費最少為多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司租賃甲、乙兩種設備生產(chǎn)、兩類產(chǎn)品,甲種設備每天能生產(chǎn)類產(chǎn)品件和類產(chǎn)品件,乙種設備每天能生產(chǎn)類產(chǎn)品件和類產(chǎn)品件.已知設備甲每天的租賃費為元,設備乙每天的租賃費為元,現(xiàn)該公司至少要生產(chǎn)類產(chǎn)品件,類產(chǎn)品件,求所需租賃費最少為多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,點D、E、F分別為線段A1C1、AB、A1A的中點,A1A=AC=BC,∠ACB=90°.求證:
(1)DE∥平面BCC1B1;
(2)EF⊥平面B1CE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直角坐標系xOy中,點A坐標為(2,0),點B坐標為(4,3),點C坐標為(1,3),且(t∈R).
(1) 若CM⊥AB,求t的值;
(2) 當0≤ t ≤1時,求直線CM的斜率k和傾斜角θ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com