已知g(x)是定義在[-1,1]上的奇函數(shù),且在區(qū)間[0,1]上滿足三個條件:①對于任意的x1,x2∈[0,1],當(dāng)x1<x2時,恒有g(shù)(x1)≤g(x2)成立,②g(
x
5
)=
1
2
g(x)
,③g(x)+g(1-x)=1.則g(
1
2
)+g(
1
5
)+g(
1
20
)
=( 。
A.
3
2
B.
5
4
C.
7
6
D.
9
8
∵g(x)是定義在[-1,1]上的奇函數(shù)
∴g(0)=0
∵g(x)+g(1-x)=1
∴令x=1得g(1)+g(0)=1即g(1)=1
令x=
1
2
得g(
1
2
)+g(
1
2
)=1,即g(
1
2
)=
1
2

g(
x
5
)=
1
2
g(x)

∴令x=1得g(
1
5
)=
1
2
g(1)=
1
2

令x=
1
2
得g(
1
10
)=
1
2
g(
1
2
)=
1
4

令x=
1
5
得g(
1
25
)=
1
2
g(
1
5
)=
1
4

∵對于任意的x1,x2∈[0,1],當(dāng)x1<x2時,恒有g(shù)(x1)≤g(x2)成立
∴g(
1
20
)=
1
4

g(
1
2
)+g(
1
5
)+g(
1
20
)
=
1
2
+
1
2
+
1
4
=
5
4

故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、已知f(x)是定義在R上的函數(shù),f(1)=10,且對于任意x∈R都有f(x+20)≥f(x)+20,f(x+1)≤f(x)+1,若g(x)=f(x)+1-x,則g(10)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•資中縣模擬)已知g(x)是定義在[-1,1]上的奇函數(shù),且在區(qū)間[0,1]上滿足三個條件:①對于任意的x1,x2∈[0,1],當(dāng)x1<x2時,恒有g(shù)(x1)≤g(x2)成立,②g(
x
5
)=
1
2
g(x)
,③g(x)+g(1-x)=1.則g(
1
2
)+g(
1
5
)+g(
1
20
)
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知g(x)是定義在[-1,1]上的奇函數(shù),且在區(qū)間[0,1]上滿足三個條件:①對于任意的x1,x2∈[0,1],當(dāng)x1<x2時,恒有g(shù)(x1)≤g(x2)成立,②數(shù)學(xué)公式,③g(x)+g(1-x)=1.則數(shù)學(xué)公式=


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省內(nèi)江市資中縣高考數(shù)學(xué)零模試卷(理科)(解析版) 題型:選擇題

已知g(x)是定義在[-1,1]上的奇函數(shù),且在區(qū)間[0,1]上滿足三個條件:①對于任意的x1,x2∈[0,1],當(dāng)x1<x2時,恒有g(shù)(x1)≤g(x2)成立,②,③g(x)+g(1-x)=1.則=( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案