【題目】拋物線y2=4x的焦點為F,過點(0,3)的直線與拋物線交于A,B兩點,線段AB的垂直平分線交x軸于點D,若|AF|+|BF|=6,則點D的橫坐標為

【答案】4
【解析】解:設(shè)AB的中點為H,
拋物線y2=4x的焦點為F(1,0),準線為x=﹣1,
設(shè)A,B,H在準線上的射影分別為A',B',H',
則|HH'|= (|AA'|+|BB'|),
由拋物線的定義可得,
|AF|=|AA'|,|BF|=|BB'|,
|AF|+|BF|=6,即為|AA'|+|BB'|=6,
|HH'|= ×6=3,
即有H的橫坐標為2,
設(shè)直線AB:y=kx+3,
代入拋物線方程,可得k2x2+(6k﹣4)x+9=0,
即有判別式(6k﹣4)2﹣36k2>0,解得k< 且k≠0,
又x1+x2= =4,
解得k=﹣2或 (舍去),
則直線AB:y=﹣2x+3,
AB的中點為(2,﹣1),
AB的中垂線方程為y+1= (x﹣2),
令y=0,解得x=4,
則D(4,0).
所以答案是:4.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了解各校《國學(xué)》課程的教學(xué)效果,組織全市各學(xué)校高二年級全體學(xué)生參加了國學(xué)知識水平測試,測試成績從高到低依次分為A、B、C、D四個等級.隨機調(diào)閱了甲、乙兩所學(xué)校各60名學(xué)生的成績,得到如下的分布圖:

(Ⅰ)試確定圖中 的值;
(Ⅱ)若將等級A、B、C、D依次按照 分、80分、60分、50分轉(zhuǎn)換成分數(shù),試分別估計兩校學(xué)生國學(xué)成績的均值;
(Ⅲ)從兩校獲得A等級的同學(xué)中按比例抽取5人參加集訓(xùn),集訓(xùn)后由于成績相當,決定從中隨機選2人代表本市參加省級比賽,求兩人來自同一學(xué)校的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,棱柱ABCD﹣A1B1C1D1的底面是菱形.側(cè)棱長為5,平面ABCD⊥平面A1ACC1 , AB=3 ,∠BAD=60°,點E是△ABD的重心,且A1E=4.
(1)求證:平面A1DC1∥平面AB1C;
(2)求二面角B1﹣AC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)是定義在(﹣∞,+∞)上的增函數(shù),實數(shù)a使得f(1﹣ax﹣x2)<f(2﹣a)對于任意x∈[0,1]都成立,則實數(shù)a的取值范圍是(
A.(﹣∞,1)
B.[﹣2,0]
C.(﹣2﹣2 ,﹣2+2
D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,(a∈R)
(1)若f(x)在x=0處取得極值,確定a的值.
(2)若f(x)在R上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,圓C的方程為(x﹣2)2+y2=1,點P在直線l:x+y+1=0上,若過點P存在直線m與圓C交于A,B兩點,且點A為PB中點,則點P的恒坐標的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱與底面垂直,AB=AC=1,AA1=2,且P,Q,M分別是BB1 , CC1 , B1C1的中點,AB⊥AQ.

(1)求證:AB⊥AC;
(2)求證:AQ∥平面A1PM;
(3)求AQ與平面BCC1B1所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=3,n(an+1﹣an)=an+1,n∈N*若對于任意的a∈[﹣1,1],n∈N* , 不等式 ﹣2at+1恒成立,則實數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓內(nèi)接△ABC,A,B,C所對的邊分別為a,b,c,滿足acosC+ccosA=2bcosB.
(1)求B的大;
(2)若點D是劣弧 上一點,AB=3,BC=2,AD=1,求四邊形ABCD的面積.

查看答案和解析>>

同步練習冊答案