設動點P到點A(-1,0)和B(1,0)的距離分別為d1和d2,∠APB=2,且存在常數(shù)λ(0<λ<1),使得.(如圖所示)那么點P的軌跡是

[  ]

A.

B.橢圓

C.雙曲線

D.拋物線

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設動點P到點A(-1,0)和B(1,0)的距離分別為d1和d2,∠APB=2θ,且存在常數(shù)λ(0<λ<1),使得d1d2sin2θ=λ.
(1)證明:動點P的軌跡C為雙曲線,并求出C的方程;
(2)過點B作直線雙曲線C的右支于M,N兩點,試確定λ的范圍,使
OM
ON
=0
,其中點O為坐標原點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

(2007江西,21)設動點P到點A(1,0)B(10)的距離分別為,∠APB=2θ,且存在常數(shù)λ(0<λ<1),使得

(1)證明:動點P的軌跡C為雙曲線,并求出C的方程;

(2)過點B作直線交雙曲線C的右支于M、N兩點,試確定λ的范圍,使,其中點O為坐標原點.

查看答案和解析>>

科目:高中數(shù)學 來源:湖北省武漢四中2008屆高三九月考模擬試題、數(shù)學 題型:044

設動點P到點A(-1,0)和B(1,0)的距離分別為d1和d2,且存在常數(shù)λ(0<λ<1),使得

(1)證明:動點P的軌跡C為雙曲線,并求出C的方程;

(2)過點B作直線雙曲線C的右支于M,N兩點,試確定λ的范圍,使,其中點O為坐標原點.

查看答案和解析>>

科目:高中數(shù)學 來源:2007年江西省高考數(shù)學試卷(理科)(解析版) 題型:解答題

設動點P到點A(-1,0)和B(1,0)的距離分別為d1和d2,∠APB=2θ,且存在常數(shù)λ(0<λ<1),使得d1d2sin2θ=λ.
(1)證明:動點P的軌跡C為雙曲線,并求出C的方程;
(2)過點B作直線雙曲線C的右支于M,N兩點,試確定λ的范圍,使,其中點O為坐標原點.

查看答案和解析>>

同步練習冊答案