為了讓學生等多的了解“數(shù)學史”知識,某中學高二年級舉辦了一次“追尋先哲的足跡,傾聽數(shù)學的聲音”的數(shù)學史知識競賽活動,共有800名學生參加了這次競賽,為了解本次競賽的成績情況,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,請你根據(jù)頻率分布表解答下列問題:
(1)填充頻率分布表中的空格.
(2)為鼓勵學生更多的學生了解“數(shù)學史”知識,成績不低于85分的同學能獲獎,請估計在參加的800名學生中大概有多少名學生獲獎?
(3)在上述統(tǒng)計數(shù)據(jù)的分析中有一項計算見算法流程圖,求輸出的S的值.
      
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

回歸分析中,相關指數(shù)的值越大,說明殘差平方和 (   )
A.越小B.越大C.可能大也可能小D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知之間的數(shù)據(jù)如下表所示,

之間的線性回歸方程過點(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一位母親記錄了兒子3~9歲的身高,由此建立的身高與年齡的回歸直線方程為
,據(jù)此可以預測這個孩子10歲時的身高,則正確的敘述是    
A.身高一定是145.83cmB.身高超過146.00cm
C.身高低于145.00cmD.身高在145.83cm左右

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知之間的一組數(shù)據(jù):

2
4
6
8

1
5
3
7
的線性回歸方程必過點
A.(20,16)              B.(16,20)               C.(4,5)               D.(5,4)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
某公司有電子產(chǎn)品件,合格率為96%,在投放市場之前,決定對該產(chǎn)品進行最后檢驗,為了減少檢驗次數(shù),科技人員采用打包的形式進行,即把件打成一包,對這件產(chǎn)品進行一次性整體檢驗,如果檢測儀器顯示綠燈,說明該包產(chǎn)品均為合格品;如果檢測儀器顯示紅燈,說明該包產(chǎn)品至少有一件不合格,須對該包產(chǎn)品一共檢測了
(1)探求檢測這件產(chǎn)品的檢測次數(shù);
(2)如果設,要使檢測次數(shù)最少,則每包應放多少件產(chǎn)品?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
某市為了對學生的數(shù)理(數(shù)學與物理)學習能力進行分析,從10000名學生中隨機抽出100位學生的數(shù)理綜合學習能力等級分數(shù)(6分制)作為樣本,分數(shù)頻數(shù)分布如下表:
等級得分






人數(shù)
3
17
30
30
17
3
(Ⅰ)如果以能力等級分數(shù)大于4分作為良好的標準,從樣本中任意抽。裁麑W生,求恰有1名學生為良好的概率;
(Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間的中點值為1.5)作為代表:
(ⅰ)據(jù)此,計算這100名學生數(shù)理學習能力等級分數(shù)的期望及標準差(精確到0.1);
(ⅱ) 若總體服從正態(tài)分布,以樣本估計總體,估計該市這10000名學生中數(shù)理學習能力等級在范圍內(nèi)的人數(shù) .
(Ⅲ)從這10000名學生中任意抽取5名同學,
他們數(shù)學與物理單科學習能力等級分
數(shù)如下表:

(。┱埉嫵錾媳頂(shù)據(jù)的散點圖;
(ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程(附參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

變量X與Y相對應的一組數(shù)據(jù)為(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);變量U與V相對應的一組數(shù)據(jù)為(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).表示變量Y與X之間的線性相關系數(shù),表示變量V與U之間的線性相關系數(shù),則 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(本小題滿分12分)
某中學研究性學習小組,為了考察高中學生的作文水平與愛看課外書的關系,在本校高三年級隨機調查了 50名學生.調査結果表明:在愛看課外書的25人中有18人作文水平好,另7人作文水平一般;在不愛看課外書的25人中有6人作文水平好,另19人作文水平一般.
(Ⅰ)試根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表,并運用獨立性檢驗思想,指出有多大把握認為中學生的作文水平與愛看課外書有關系?
高中學生的作文水平與愛看課外書的2×2列聯(lián)表
 
愛看課外書
不愛看課外書
總計
作文水平
 
 
 
作文水平一般
 
 
 
總計
 
 
 
(Ⅱ)將其中某5名愛看課外書且作文水平好的學生分別編號為1、2、3、4、5,某5名愛看課外書且作文水平一般的學生也分別編號為1、2、3、4、5,從這兩組學生中各任選1人進行學習交流,求被選取的兩名學生的編號之和為3的倍數(shù)或4的倍數(shù)的概率.
參考公式:,其中.
參考數(shù)據(jù):

0.10
0.05
0.025
0.010
0.005
0.001

2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

同步練習冊答案