【題目】如圖,在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,點(diǎn)E,F(xiàn)分別是棱BC,CC1的中點(diǎn),P是側(cè)面BCC1B1內(nèi)一點(diǎn),若A1P∥平面AEF,則線段A1P長(zhǎng)度的取值范圍是

【答案】[ ]
【解析】解:如下圖所示:
分別取棱BB1、B1C1的中點(diǎn)M、N,連接MN,連接BC1 ,
∵M(jìn)、N、E、F為所在棱的中點(diǎn),∴MN∥BC1 , EF∥BC1
∴MN∥EF,又MN平面AEF,EF平面AEF,
∴MN∥平面AEF;
∵AA1∥NE,AA1=NE,∴四邊形AENA1為平行四邊形,
∴A1N∥AE,又A1N平面AEF,AE平面AEF,
∴A1N∥平面AEF,
又A1N∩MN=N,∴平面A1MN∥平面AEF,
∵P是側(cè)面BCC1B1內(nèi)一點(diǎn),且A1P∥平面AEF,
則P必在線段MN上,
在Rt△A1B1M中,A1M= = = ,
同理,在Rt△A1B1N中,求得A1N=
∴△A1MN為等腰三角形,
當(dāng)P在MN中點(diǎn)O時(shí)A1P⊥MN,此時(shí)A1P最短,P位于M、N處時(shí)A1P最長(zhǎng),
A1O= = = ,
A1M=A1N=
所以線段A1P長(zhǎng)度的取值范圍是[ ].
所以答案是:[ ].
【考點(diǎn)精析】通過靈活運(yùn)用直線與平面平行的性質(zhì),掌握一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行;簡(jiǎn)記為:線面平行則線線平行即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,討論的單調(diào)性;

(2)若,證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,過左焦點(diǎn)F且垂直于x軸的直線與橢圓相交,所得弦長(zhǎng)為1,斜率為 ()的直線過點(diǎn),且與橢圓相交于不同的兩點(diǎn). 

(Ⅰ)求橢圓的方程;

(Ⅱ)在軸上是否存在點(diǎn),使得無(wú)論取何值, 為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1點(diǎn)E,F(xiàn),G分別是DD1 , AB,CC1的中點(diǎn),則異面直線A1E與GF所成的角是(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角, 的對(duì)邊分別為, , .已知

(1)求角的大小;

2)若, ,的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是(
A.y=
B.y=﹣x+
C.y=﹣x|x|
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價(jià)為60元,該廠為鼓勵(lì)銷售商訂購(gòu),決定當(dāng)一次訂購(gòu)量超過100件時(shí),每多訂購(gòu)一件,訂購(gòu)的全部服裝的出廠單價(jià)就降低0.02元,根據(jù)市場(chǎng)調(diào)查,銷售商一次訂購(gòu)量不會(huì)超過500件.
(1)設(shè)一次訂購(gòu)量為x件,服裝的實(shí)際出廠單價(jià)為P元,寫出函數(shù)P=f(x)的表達(dá)式;
(2)當(dāng)銷售商一次訂購(gòu)多少件服裝時(shí),該服裝廠獲得的利潤(rùn)最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某消費(fèi)品專賣店的經(jīng)營(yíng)資料顯示如下:
①這種消費(fèi)品的進(jìn)價(jià)為每件14元;
②該店月銷售量Q(百件)與銷售價(jià)格P(元)滿足的函數(shù)關(guān)系式為Q= ,點(diǎn)(14,22),(20,10),(26,1)在函數(shù)的圖象上;
③每月需各種開支4400元.

(1)求月銷量Q(百件)與銷售價(jià)格P(元)的函數(shù)關(guān)系;
(2)當(dāng)商品的價(jià)格為每件多少元時(shí),月利潤(rùn)最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中與函數(shù)y=x相等的函數(shù)是(
A.y=log22x
B.y=
C.y=2
D.y=( 2

查看答案和解析>>

同步練習(xí)冊(cè)答案