命題“?x∈R,cosx≤
1
2
”的否定是( 。
A、?x∈R,cosx≥
1
2
B、?x∈R,cosx>
1
2
C、?∈R,cosx≥
1
2
D、?x∈R,cosx>
1
2
考點:命題的否定
專題:簡易邏輯
分析:直接利用全稱命題的否定是特稱命題寫出結果即可.
解答: 解:因為全稱命題的否定是特稱命題,所以命題“?x∈R,cosx≤
1
2
”的否定是:?x∈R,cosx>
1
2

故選:B.
點評:本題考查命題的否定特稱命題與全稱命題的否定關系,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}的前n項和為Sn,a4-a1=78,S3=39,設bn=log3an,那么數(shù)列{bn}的前10項和為( 。
A、log371
B、
69
2
C、50
D、55

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設i為虛數(shù)單位,若復數(shù)z滿足z(1+i)=2+4i,則z對應在復平面上點的坐標為( 。
A、(1,2)
B、(1,3)
C、(3,1 )
D、(2,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={a,a2},B={1},若B⊆A,則實數(shù)a的取值集合為( 。
A、{1,-1}B、{1}
C、{-1}D、∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合A={x|x2-x-2≥0},集合B={x|-2<x<1},則A∩B=(  )
A、{x|-2<x<-1}
B、{x|-2<x≤-1}
C、{x|-2<x<2}
D、∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=sin(
π
3
-
1
2
x)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cos(x+
π
6
),x∈R.
(1)求f(π)的值;
(2)若cosθ=
4
5
,θ∈(-
π
2
,0)
,求f(θ-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>1,在約束條件
y≥x
y≤ax
x+y≤1
下,目標函數(shù)z=x+ay的最大值小于2,則a的取值范圍是( 。
A、(1,3)
B、(3,+∞)
C、(
2
+1,+∞)
D、(1,
2
+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax-(2a+1)lnx-
2
x
,g(x)=-2alnx-
2
x
,其中a∈R
(1)當a=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當a>0時,求f(x)的單調區(qū)間;
(3)若存在x∈[
1
e
,e2],使不等式f(x)≥g(x)成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案