設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為2,F(xiàn)(2,0)是右焦點.若A,B為雙曲線上關(guān)于原點對稱的兩點,且
AF
BF
=0,則直線AB的斜率是( 。
A、±
7
3
B、±
3
7
7
C、±
3
7
D、±
7
7
3
考點:直線與圓錐曲線的綜合問題,直線與圓錐曲線的關(guān)系
專題:圓錐曲線的定義、性質(zhì)與方程
分析:留言已知條件求出雙曲線方程,設(shè)出AB坐標,通過數(shù)量積為0,轉(zhuǎn)化為邊長關(guān)系,然后求解直線AB的斜率.
解答: 解:由題意雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為2,F(xiàn)(2,0)是右焦點.
可知c=2,a=1,b=
3

雙曲線方程為:x2-
y2
3
=1
,
設(shè)A(x0,y0),則B(-x0,-y0),
因為
AF
BF
=0,所以
AF
BF

三角形是直角三角形,則|OA|=|OF|,
可得x02+y02=4又x02-
y02
3
=1

聯(lián)立解得
x0=
7
2
y0=
3
2
,
x0=-
7
2
y0=
3
2
x0=
7
2
y0=-
3
2
,
x0=-
7
2
y0=-
3
2
,
所以直線直線AB的斜率是:
y0
x0
3
7
7
點評:本題考查雙曲線的標準方程的求法,雙曲線與直線以及圓的方程的綜合應(yīng)用,考查分析問題解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義區(qū)間[x1,x2]長度為x2-x1,(x2>x1),已知函數(shù)f(x)=
(a2+a)x-1
a2x
 (a∈R,a≠0)的定義域與值域都是[m,n],則區(qū)間[m,n]取最大長度時a的值為( 。
A、
2
3
3
B、a>1或a<-3
C、a>1
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)f(x)=ax-2.
(1)解關(guān)于x的不等式|f(x)|<4;
(2)若不等式|f(x)|≤3對任意的x∈[0,1]恒成立,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和sn,且s4=16,a4=7.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校有120名教師,其年齡都在20~60歲之間,各年齡段人數(shù)按[20,30),[30,40),[40,50),[50,60)分組,其頻率分布直方圖如右圖所示.學(xué)校為了適應(yīng)新課程改革,要求每名教師都要參加甲、乙兩項培訓(xùn),培訓(xùn)結(jié)束后進行結(jié)業(yè)考試,已知各年齡段兩項培訓(xùn)結(jié)業(yè)考試成績優(yōu)秀的人數(shù)如下表所示.假設(shè)兩項培訓(xùn)是相互獨立的,結(jié)業(yè)考試也互不影響.
年齡分組甲項培訓(xùn)成績優(yōu)秀人數(shù)乙項培訓(xùn)成績優(yōu)秀人數(shù)
[20,30)3018
[30,40)3624
[40,50)129
[50,60)43
(1)若用分層抽樣法從全校教師中抽取一個容量為40的樣本,求各年齡段應(yīng)分別抽取的人數(shù),并估計全校教師的平均年齡;
(2)隨機從年齡段[20,30)和[30,40)中各抽取1人,求這兩人中至少有一人在甲、乙兩項培訓(xùn)結(jié)業(yè)考試成績?yōu)閮?yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某城市持續(xù)性的霧霾天氣嚴重威脅著人們的身體健康,汽車的尾氣排放是造成霧霾天氣的重要因素之一,為此該城市實施了機動車尾號限行政策.現(xiàn)有家報社想調(diào)查了解該市區(qū)公民對“車輛限行”的態(tài)度,并在該城市里隨機抽查了50人,將調(diào)查情況進行整理后制成下表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
頻  數(shù)24201455
支持的人數(shù)13151144
(1)請估計該市公民對“車輛限行”的支持率(答案用百分比表示);
(2)若從年齡在[15,25),[25,35)的被調(diào)查者中采用分層抽樣選取3人進行跟蹤調(diào)查,求選取的3人中有2人不支持“車輛限行”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項a1=1,an+1=
2
an
+1,則這個數(shù)列的第四項是( 。
A、
11
7
B、
11
5
C、
21
11
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐P-ABC的三條側(cè)棱PA、PB、PC兩兩互相垂直,且長度分別為3、4、5,則三棱錐P-ABC外接球的體積是( 。
A、20
2
π
B、
125
2
6
π
C、
125
2
3
π
D、50π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是正項數(shù)列,a1=1,且點(
an
,an+1)(n∈N*)在函數(shù)y=x2+1的圖象上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=1+
1
anan+1
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案