分析 (1)由x=ρcosθ,y=ρsinθ,ρ2=x2+y2,以及兩角差的余弦公式,化簡整理即可得到所求直角坐標(biāo)方程;
(2)聯(lián)立直線和圓方程,解得交點(diǎn),化為極坐標(biāo)即可.
解答 解:(1)由x=ρcosθ,y=ρsinθ,ρ2=x2+y2,
ρ=4sinθ,即為ρ2=4ρsinθ,
即有x2+y2=4y;
ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$,即為ρ($\frac{\sqrt{2}}{2}$cosθ+$\frac{\sqrt{2}}{2}$sinθ)=2$\sqrt{2}$,
即x+y=4,
即有${C_1}:{x^2}+{(y-{2^{\;}})^2}=4$,C2:x+y-4=0;
(2)將直線和圓的方程聯(lián)立后,
即$\left\{\begin{array}{l}{x+y-4=0}\\{{x}^{2}+{y}^{2}-4y=0}\end{array}\right.$
解得直角坐標(biāo)為(0,4),(2,2),
則交點(diǎn)的極坐標(biāo)為(4,$\frac{π}{2}$),(2$\sqrt{2}$,$\frac{π}{4}$) (注:極坐標(biāo)表示法不唯一).
點(diǎn)評(píng) 本題考查直角坐標(biāo)方程和極坐標(biāo)方程的互化,直線和圓的交點(diǎn)坐標(biāo)求法,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≤$\frac{41}{8}$ | B. | a≤11 | C. | a≥$\frac{41}{8}$ | D. | a≥11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0)∪($\frac{1}{2}$,1) | B. | (-∞,0)∪(1,2) | C. | (-∞,$\frac{1}{2}$)∪(1,2) | D. | (-∞,$\frac{1}{2}$)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,5) | B. | (-1,5] | C. | (-1,2) | D. | (-1,2] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com