12.若函數(shù)y=cos2ωx(ω>0)的最小正周期是π,則ω=1.

分析 利用半角公式化簡函數(shù)的解析式,再利用余弦函數(shù)的周期性求得ω的值.

解答 解:∵函數(shù)y=cos2ωx=$\frac{1+cos2ωx}{2}$(ω>0)的最小正周期是π,
則$\frac{2π}{2ω}$=π,求得ω=1,
故答案為:1.

點(diǎn)評 本題主要考查半角公式的應(yīng)用,余弦函數(shù)的周期性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.下列程序運(yùn)行的結(jié)果是5050.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知雙曲線C的漸近線方程為y=±x,一個(gè)焦點(diǎn)為(2$\sqrt{2}$,0).
(1)求雙曲線C的方程;
(2)過雙曲線C上的任意一點(diǎn)P,分別作這兩條漸近線的平行線與這兩條漸近線得到四邊形ODPG,證明四邊形ODPG的面積是一個(gè)定值;
(3)(普通中學(xué)做)命題甲:設(shè)直線x=0與y=h(h>0)在第一象限內(nèi)與漸近線y=x所圍成的三角形OMN繞著y軸旋轉(zhuǎn)一周所得幾何體的體積.

(重點(diǎn)中學(xué)做)命題乙:設(shè)直線y=0與y=h(h>0)在第一象限內(nèi)與雙曲線及漸近線所圍成的如圖所示的圖形OABN,求它繞y軸旋轉(zhuǎn)一圈所得幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知a1=$\frac{1}{4}$(1-$\frac{1}{3}$),a2=$\frac{1}{4}$($\frac{1}{3}$-$\frac{1}{5}$),a3=$\frac{1}{4}$($\frac{1}{5}$-$\frac{1}{7}$),a4=$\frac{1}{4}$($\frac{1}{7}$-$\frac{1}{9}$),…,以此類推a1+a2+a3+…+a1008的值為$\frac{504}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知Sn是等比數(shù)列{an}的前n項(xiàng)和,若$\frac{{S}_{m}}{{S}_{2m}}$=$\frac{1}{5}$(m∈N*),則$\frac{{a}_{m}}{{a}_{2m}}$=(  )
A.$\frac{1}{4}$B.4C.$\frac{1}{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-{y}^{2}$=1的一條漸近線與直線y=-x+1垂直,則該雙曲線的焦距為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知命題p:?x∈R,x2<0;命題q:?x>2,log${\;}_{\frac{1}{2}}$x<0,則下列命題中為真命題的是( 。
A.p∧qB.p∧¬qC.¬p∧qD.p∨¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,|$\overrightarrow{a}$|=3,|$\overrightarrow$|=1,則|$\overline{a}$+2$\overrightarrow$|=$\sqrt{19}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$=(1,2),|$\overrightarrow$|=5,$\overrightarrow{a}•\overrightarrow$=5,則$\overrightarrow{a}$,$\overrightarrow$的夾角為θ,則cosθ=( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{\sqrt{10}}{5}$D.$\frac{\sqrt{15}}{5}$

查看答案和解析>>

同步練習(xí)冊答案