【題目】研究機構對某校學生往返校時間的統(tǒng)計資料表明:該校學生居住地到學校的距離(單位:千米)和學生花費在上學路上的時間(單位:分鐘)有如下的統(tǒng)計資料:
到學校的距離(千米) | 1.8 | 2.6 | 3.1 | 4.3 | 5.5 | 6.1 |
花費的時間(分鐘) | 17.8 | 19.6 | 27.5 | 31.3 | 36.0 | 43.2 |
如果統(tǒng)計資料表明與有線性相關關系,試求:
(1)判斷與是否有很強的線性相關性?
(相關系數(shù)的絕對值大于0.75時,認為兩個變量有很強的線性相關性,精確到0.01)
(2)求線性回歸方程(精確到0.01);
(3)將分鐘的時間數(shù)據(jù)稱為美麗數(shù)據(jù),現(xiàn)從這6個時間數(shù)據(jù)中任取2個,求抽取的2個數(shù)據(jù)全部為美麗數(shù)據(jù)的概率.
參考數(shù)據(jù):,,,,
,
參考公式:,
【答案】(1)與有很強的線性相關性;(2);(3)
【解析】
(1)通過計算線性相關系數(shù)可得答案;(2)根據(jù)題意寫出統(tǒng)計表,用統(tǒng)計表中的數(shù)據(jù)求出橫標和縱標的平均數(shù),利用最小二乘法做出線性回歸方程的系數(shù)、,寫出線性回歸方程;(3)根據(jù)(2)中求出的線性回歸方程,求出符合要求的數(shù)據(jù)個數(shù),再列出全部情況,由古典概型的公式,求出所求概率.
(1)∴與有很強的線性相關性
(2)依題意得
,,
所以
又因為
故線性回歸方程為
(3)由(2)可知,當時,,當時,,所以滿足分鐘的美麗數(shù)據(jù)共有3個,設3個美麗數(shù)據(jù)為、、,另3個不是美麗數(shù)據(jù)為、、,則從6個數(shù)據(jù)中任取2個共有15種情況,即,,,,,,,,,,,,,,,其中,抽取到的數(shù)據(jù)全部為美麗數(shù)據(jù)的有3種情況,即,,.所以從這6個數(shù)據(jù)中任取2個,抽取的2個數(shù)據(jù)全部為美麗數(shù)據(jù)的概率為
科目:高中數(shù)學 來源: 題型:
【題目】“沉魚、落雁、閉月、羞花”是由精彩故事組成的歷史典故.“沉魚”,講的是西施浣紗的故事;“落雁”,指的就是昭君出塞的故事;“閉月”,是述說貂蟬拜月的故事;“羞花”,談的是楊貴妃醉酒觀花時的故事.她們分別是中國古代的四大美女.某藝術團要以四大美女為主題排演一部舞蹈劇,已知乙扮演楊貴妃,甲、丙、丁三人抽簽決定扮演的對象,則甲不扮演貂蟬且丙扮演昭君的概率為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為研究學生語言學科的學習情況,現(xiàn)對高二200名學生英語和語文某次考試成績進行抽樣分析. 將200名學生編號為001,002,…,200,采用系統(tǒng)抽樣的方法等距抽取10名學生,將10名學生的兩科成績(單位:分)繪成折線圖如下:
(Ⅰ)若第一段抽取的學生編號是006,寫出第五段抽取的學生編號;
(Ⅱ)在這兩科成績差超過20分的學生中隨機抽取2人進行訪談,求2人成績均是語文成績高于英語成績的概率;
(Ⅲ)根據(jù)折線圖,比較該校高二年級學生的語文和英語兩科成績,寫出你的結論和理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為,點是橢圓上的一個動點,當直線的斜率等于時,軸.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點且斜率為的直線與直線相交于點,試判斷以為直徑的圓是否過軸上的定點?若是,求出定點坐標;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點為F,點A(2,y0)為拋物線上一點,且|AF|=4.
(1)求拋物線的方程;
(2)直線l:y=x+m與拋物線交于不同兩點P,Q,若,其中O為坐標原點,求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知極坐標系中,點,曲線的極坐標方程為,點在曲線上運動,以極點為坐標原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù)).
(1)求直線的普通方程與曲線的參數(shù)方程;
(2)求線段的中點到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點F與雙曲線的一個焦點重合,過焦點F的直線l交拋物線于A,B兩點.
(1)求拋物線C的方程;
(2)記拋物線C的準線與x軸的交點為N,試問是否存在常數(shù)λ∈R,使得且都成立?若存在,求出實數(shù)λ的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)將的方程化為普通方程,將的方程化為直角坐標方程;
(Ⅱ)已知直線的參數(shù)方程為,為參數(shù),且,與交于點,與交于點,且,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為迎接2022年冬奧會,北京市組織中學生開展冰雪運動的培訓活動,并在培訓結束后對學生進行了考核.記X表示學生的考核成績,并規(guī)定X≥85為考核優(yōu)秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了30名學生的考核成績,并作成如下莖葉圖.
(1)從參加培訓的學生中隨機選取1人,請根據(jù)圖中數(shù)據(jù),估計這名學生考核優(yōu)秀的概率;
(2)從圖中考核成績滿足X[70,79]的學生中任取3人,設Y表示這3人重成績滿足≤10的人數(shù),求Y的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com