定義兩種運算:a⊕b=
a2-b2
,a*b=|a-b|,則函數(shù)f(x)=
1⊕x
(x*1)-1
的奇偶性為( 。
分析:由題意可得f(x)=
1-x2
|x-1|-1
=-
1-x2
x
,利用奇偶函數(shù)的定義判斷即可.
解答:解:∵a⊕b=
a2-b2
,a*b=|a-b|,
∴f(x)=
1⊕x
(x*1)-1
=
1-x2
|x-1|-1
,
∵1-x2≥0,|x-1|-1≠0,
∴-1≤x<0或0<x≤1,
∴f(x)=-
1-x2
x

∴f(-x)=
1-x2
x
=-f(x),
∴f(x)為奇函數(shù).
故選A.
點評:本題考查函數(shù)函數(shù)奇偶性的判斷,將f(x)化為f(x)=-
1-x2
x
是關鍵,
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義兩種運算:a⊕b=a2+b2,a⊙b=ab(a,b∈R),則函數(shù)f(x)=
2⊙x
(x⊕2)-2
是( 。
A、奇函數(shù)
B、偶函數(shù)
C、既是奇數(shù)又是偶函數(shù)
D、既不是奇函數(shù)也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義兩種運算:a⊕b=ab,a?b=a2+b2,則函數(shù)f(x)=
1⊕x
(x?1)-2
的奇偶性為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義兩種運算:a⊕b=ab,a?b=a2+b2,則函數(shù)f(x)=
2⊕x(x?2)-2
的奇偶性為
奇函數(shù)
奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義兩種運算:a⊕b=
a2-b2
,a?b=
(a-b)2
,則函數(shù)f(x)=
2⊕x
(x?2)-2
的圖象關于( 。

查看答案和解析>>

同步練習冊答案