【題目】①在同一坐標(biāo)系中,與的圖象關(guān)于軸對(duì)稱(chēng)
②函數(shù)是奇函數(shù)
③函數(shù)的圖象關(guān)于成中心對(duì)稱(chēng)
④函數(shù)的最大值為
以上四個(gè)判斷正確有_____________.(寫(xiě)上序號(hào))
【答案】①②③
【解析】
①通過(guò)換底公式得到,由圖象對(duì)稱(chēng)可判斷正誤;②利用函數(shù)的奇偶性的定義判斷即可;③通過(guò)的對(duì)稱(chēng)性與函數(shù)的平移變換即可判斷;④通過(guò)復(fù)合函數(shù)的性質(zhì)以及最值判斷正誤即可.
對(duì)于①由于,則在同一坐標(biāo)系中,與的圖象關(guān)于軸對(duì)稱(chēng),故①正確;
對(duì)于②,函數(shù)的定義域,,函數(shù)是奇函數(shù),故②正確;
對(duì)于③,的對(duì)稱(chēng)中心,函數(shù),向左平移2個(gè)單位,向上平移1個(gè)單位,得到的圖象對(duì)稱(chēng)中心,所以函數(shù)的圖象關(guān)于成中心對(duì)稱(chēng),故③正確;
對(duì)于④,函數(shù)是偶函數(shù),時(shí),函數(shù)是減函數(shù),時(shí),函數(shù)是增函數(shù),時(shí)函數(shù)取得的最小值為,故④錯(cuò)誤,故答案為①②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓上一動(dòng)點(diǎn),過(guò)點(diǎn)作軸,垂足為點(diǎn),中點(diǎn)為.
(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;
(Ⅱ)過(guò)點(diǎn)的直線(xiàn)與交于兩點(diǎn),當(dāng)時(shí),求線(xiàn)段的垂直平分線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓,離心率,短軸,拋物線(xiàn)頂點(diǎn)在原點(diǎn),以坐標(biāo)軸為對(duì)稱(chēng)軸,焦點(diǎn)為,
(1)求橢圓和拋物線(xiàn)的方程;
(2)設(shè)坐標(biāo)原點(diǎn)為,為拋物線(xiàn)上第一象限內(nèi)的點(diǎn),為橢圓是一點(diǎn),且有,當(dāng)線(xiàn)段的中點(diǎn)在軸上時(shí),求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)證明:只有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為ρ=2cosθ.
(1)若曲線(xiàn)C1方程中的參數(shù)是α,且C1與C2有且只有一個(gè)公共點(diǎn),求C1的普通方程;
(2)已知點(diǎn)A(0,1),若曲線(xiàn)C1方程中的參數(shù)是t,0<α<π,且C1與C2相交于P,Q兩個(gè)不同點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)的參數(shù)方程: (為參數(shù)),曲線(xiàn)的參數(shù)方程: (為參數(shù)),且直線(xiàn)交曲線(xiàn)于兩點(diǎn).
(1)將曲線(xiàn)的參數(shù)方程化為普通方程,并求時(shí), 的長(zhǎng)度;
(2)巳知點(diǎn),求當(dāng)直線(xiàn)傾斜角變化時(shí), 的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時(shí)全修好;單位對(duì)學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個(gè)大致統(tǒng)計(jì),具體數(shù)據(jù)如表:
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總計(jì) | |
學(xué)習(xí)雷鋒精神前 | 50 | 150 | 200 |
學(xué)習(xí)雷鋒精神后 | 30 | 170 | 200 |
總計(jì) | 80 | 320 | 400 |
求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?
請(qǐng)說(shuō)明是否有以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神
有關(guān)?參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把個(gè)相同的小球放到三個(gè)編號(hào)為的盒子中,且每個(gè)盒子內(nèi)的小球數(shù)要多于盒子的編號(hào)數(shù),則共有多少種放法( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中中,曲線(xiàn)的參數(shù)方程為為參數(shù), ). 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知直線(xiàn)的極坐標(biāo)方程為.
(1)設(shè)是曲線(xiàn)上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)到直線(xiàn)的距離的最大值;
(2)若曲線(xiàn)上所有的點(diǎn)均在直線(xiàn)的右下方,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com