分析 如圖所示,由三視圖可知:該幾何體為三棱錐P-ABC.該幾何體可以看成是兩個底面均為△PCD,高分別為AD和BD的棱錐形成的組合體,進而可得答案.
解答 解:如圖所示,
由三視圖可知:
該幾何體為三棱錐P-ABC.
該幾何體可以看成是兩個底面均為△PCD,高分別為AD和BD的棱錐形成的組合體,
由幾何體的俯視圖可得:△PCD的面積S=$\frac{1}{2}$×4×4=8cm2,
由幾何體的正視圖可得:AD+BD=AB=4cm,
故幾何體的體積V=$\frac{1}{3}$×8×4=$\frac{32}{3}$cm3,
故答案為:$\frac{32}{3}$.
點評 本題考查由三視圖求幾何體的體積和表面積,根據(jù)已知的三視圖分析出幾何體的形狀是關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{3}$ | C. | -$\frac{1}{3}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $f(x)=\frac{{{e^x}+{e^{-x}}}}{2}$ | B. | $f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$ | C. | $g(x)=\frac{{{e^x}-{e^{-x}}}}{2}$ | D. | $g(x)=\frac{{{e^{-x}}-{e^x}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,+∞) | B. | [1,+∞) | C. | (2,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{16}{65}$ | B. | $\frac{56}{65}$ | C. | $\frac{16}{65}$ | D. | -$\frac{56}{65}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 內(nèi)切 | B. | 相交 | C. | 外切 | D. | 相離 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com