已知函數(shù)f(x)=
x3
a2
圖象上斜率為3的兩條切線間的距離為
2
10
5
,函數(shù)g(x)=f(x)-
3bx
a2
+3

(1)若函數(shù)g(x)在x=1處有極值,求g(x)的解析式;
(2)若函數(shù)g(x)在區(qū)間[-1,1]上為增函數(shù),且b2-mb+4≥g(x)在x∈[-1,1]時恒成立,求實數(shù)m的取值范圍.
分析:(1)先求出斜率為3的切線方程,根據(jù)兩條切線間的距離求出a值,再討論滿足g′(x)=0的點附近的導(dǎo)數(shù)的符號的變化情況,來確定極值,求出b即可.
(2)欲使函數(shù)g(x)在區(qū)間[-1,1]上為增函數(shù)只需轉(zhuǎn)化成g′(x)≥0在區(qū)間[-1,1]上恒成立,求出b的范圍,根據(jù)g(x)在x∈[-1,1]是增函數(shù)知g(x)的最大值為g(1),只需使b2-mb+4≥g(1)恒成立即可.
解答:解:(1)∵f′(x)=
3
a2
x2

∴由
3
a2
x2
=3得x=±a,
即切點坐標(biāo)為(a,a),(-a,-a)
∴切線方程為y-a=3(x-a),或y+a=3(x+a)(2分)
整理得3x-y-2a=0或3x-y+2a=0
|-2a-2a|
32+(-1)2
=
2
10
5
,
解得a=±1,
∴f(x)=x3
∴g(x)=x3-3bx+3(4分)
∵g′(x)=3x2-3b,g(x)在x=1處有極值,
∴g′(1)=0,
即3×12-3b=0,解得b=1
∴g(x)=x3-3x+3(6分)
(2)∵函數(shù)g(x)在區(qū)間[-1,1]上為增函數(shù),
∴g′(x)=3x2-3b≥0在區(qū)間[-1,1]上恒成立,
∴b≤0,
又∵b2-mb+4≥g(x)在區(qū)間[-1,1]上恒成立,
∴b2-mb+4≥g(1)(8分)
即b2-mb+4≥4-3b,若b=0,則不等式顯然成立,若b≠0,
則m≥b+3在b∈(-∞,0)上恒成立
∴m≥3.
故m的取值范圍是[3,+∞)
點評:本題主要考查了利用導(dǎo)數(shù)研究函數(shù)極值,以及函數(shù)恒成立問題和利用待定系數(shù)法求解析式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省東陽中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022

已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省許昌市長葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)、g(x),下列說法正確的是( )
A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案