【題目】已知,.
(1)求f(x)的最小正周期和最大值;(2)討論f(x)在上的單調(diào)性.
【答案】(1)最小正周期為π,最大值為(2)f(x)在上單調(diào)遞增;在上單調(diào)遞減
【解析】分析:(1)先跟據(jù).求出表達式,再結(jié)合三角函數(shù)的二倍角,降冪公式,輔助角公式化簡即可;(2)求在在上的單調(diào)性.先求出2x-的取值范圍,再結(jié)合正弦函數(shù)的圖像即可得到單調(diào)性.
詳解:(1)f(x)=sinsin x-cos2x
=cos xsin x- (1+cos 2x)
=sin 2x- (1+cos 2x)=sin 2x-cos 2x-=sin-,
因此f(x)的最小正周期為π,最大值為.
(2)當(dāng)x∈時,0≤2x-≤π,從而
當(dāng)0≤2x-≤,即≤x≤時,f(x)單調(diào)遞增,
當(dāng)≤2x-≤π,即≤x≤時,f(x)單調(diào)遞減.
綜上可知,f(x)在上單調(diào)遞增;在上單調(diào)遞減
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=,AB=8,點D在BC邊上,且CD=2,cos∠ADC=.
(1)求sin ∠BAD;
(2)求BD,AC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 , , .
(1)若 是 的充分不必要條件,求實數(shù) 的取值范圍;
(2)若 ,“ ”為真命題,“ ”為假命題,求實數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 函數(shù) 在區(qū)間 上有1個零點; 函數(shù) 圖象與 軸交于不同的兩點.若“ ”是假命題,“ ”是真命題,求實數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分.)
數(shù)列中{an},a1=8,a4=2,且滿足an+2= 2an+1- an,
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Sn=,求Sn
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】手機完全充滿電量,在開機不使用的狀態(tài)下,電池靠自身消耗一直到出現(xiàn)低電量警告之間所能維持的時間稱為手機的待機時間。
為了解A,B兩個不同型號手機的待機時間,現(xiàn)從某賣場庫存手機中隨機抽取A,B兩個型號的手機各5臺,在相同條件下進行測試,統(tǒng)計結(jié)果如下:
手機編號 | 1 | 2 | 3 | 4 | 5 |
A型待機時間(h) | 120 | 125 | 122 | 124 | 124 |
B型待機時間(h) | 118 | 123 | 127 | 120 | a |
已知A,B兩個型號被測試手機待機時間的平均值相等。
(Ⅰ)求a的值;
(Ⅱ)求A型號被測試手機待機時間方差和標(biāo)準(zhǔn)差的大;
(Ⅲ)從被測試的手機中隨機抽取A,B型號手機各1臺,求至少有1臺的待機時間超過122小時的概率。
(注:n個數(shù)據(jù)…的方差…,其中為數(shù)據(jù)…的平均數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:實數(shù)x滿足,其中a≠0,q:實數(shù)x滿足.
(I)若a=1,且p∧q為真,求實數(shù)x的取值范圍.
(II)若p是q的必要不充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com