【題目】已知定義在區(qū)間[﹣3,3]上的單調(diào)函數(shù)f(x)滿足:對任意的x∈[﹣3,3],都有f(f(x)﹣2x)=6,則在[﹣3,3]上隨機取一個實數(shù)x,使得f(x)的值不小于4的概率為( 。
A.
B.
C.
D.

【答案】C
【解析】解:根據(jù)題意可知:f(x)﹣2x是一個固定的數(shù),記為a,則f(a)=6,

∴f(x)﹣2x=a,即f(x)=a+2x,

∴當x=a時,

又∵a+2a=6,∴a=2,

∴f(x)=2+2x

由2+2x≥4,x∈[﹣3,3],可得x∈[1,3],區(qū)間長度為2,

∴在[﹣3,3]上隨機取一個實數(shù)x,使得f(x)的值不小于4的概率為 =

故選C.

由題意易知為一定值,并設這個定值為a,求解出f(x)的解析式,找到滿足條件的x的取值范圍,由幾何概型可得概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,輸出的x的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公比為q(q≠1)的等比數(shù)列a1 , a2 , a3 , a4 , 若刪去其中的某一項后,剩余的三項(不改變原有順序)成等差數(shù)列,則所有滿足條件的q的取值的代數(shù)和為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù) (ω>0)的圖象與x軸正半軸交點的橫坐標構成一個公差為 的等差數(shù)列,若要得到函數(shù)g(x)=Asinωx的圖象,只要將f(x)的圖象( 。﹤單位.
A.向左平移
B.向右平移
C.向左平移
D.向右平移

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某科技公司生產(chǎn)一種手機加密芯片,其質(zhì)量按測試指標劃分為:指標大于或等于70為合格品,小于70為次品.現(xiàn)隨機抽取這種芯片共120件進行檢測,檢測結果統(tǒng)計如表:

測試指標

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

芯片數(shù)量(件)

8

22

45

37

8

已知生產(chǎn)一件芯片,若是合格品可盈利400元,若是次品則虧損50元.
(Ⅰ)試估計生產(chǎn)一件芯片為合格品的概率;并求生產(chǎn)3件芯片所獲得的利潤不少于700元的概率.
(Ⅱ)記ξ為生產(chǎn)4件芯片所得的總利潤,求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺DEF﹣ABC中,AB=2DE,G,H分別為AC,BC的中點.

(Ⅰ)求證:BD∥平面FGH;
(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH與平面ACFD所成的角(銳角)的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面上,點A、C為射線PM上的兩點,點B、D為射線PN上的兩點,則有 (其中S△PAB、S△PCD分別為△PAB、△PCD的面積);空間中,點A、C為射線PM上的兩點,點B、D為射線PN上的兩點,點E、F為射線PL上的兩點,則有 =(其中VP﹣ABE、VP﹣CDF分別為四面體P﹣ABE、P﹣CDF的體積).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y= 與y=ln(1﹣x)的定義域分別為M、N,則M∪N=( 。
A.(1,2]
B.[1,2]
C.(﹣∞,1]∪(2,+∞)
D.(﹣∞,1)∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= ﹣alnx.
(Ⅰ)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;
(Ⅲ)若函數(shù)f(x)在區(qū)間(1,e2]內(nèi)恰有兩個零點,試求a的取值范圍.

查看答案和解析>>

同步練習冊答案