【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當x0,f(x)=-x2+ax.

(1)a=-2,求函數(shù)f(x)的解析式;

(2)若函數(shù)f(x)R上的單調減函數(shù),

a的取值范圍;

若對任意實數(shù)m,f(m-1)+f(m2+t)<0恒成立,求實數(shù)t的取值范圍.

【答案】(1) .

(2) a0.t> .

【解析】

本試題主要是考查了抽象函數(shù)的解析式的求解和單調性的證明以及解不等式。

1)因為當時,,又因為為奇函數(shù),所以,進而得到解析式。

2)根據(jù)函數(shù)單調性,對于參數(shù)a分為正負來討論得到取值范圍。

3)因為,

所以是奇函數(shù),,而又因為上的單調遞減函數(shù),所以恒成立,分離參數(shù)的思想得到范圍。

1)當時,,又因為為奇函數(shù),

所以

所以…………………………6

2時,對稱軸,所以上單調遞減,

由于奇函數(shù)關于原點對稱的區(qū)間上單調性相同,所以上單調遞減,

又在,在,

所以當a0時,R上的單調遞減函數(shù)

a>0時,上遞增,在上遞減,不合題意

所以函數(shù)為單調函數(shù)時,a的范圍為a………………………………………….10

因為,

所以是奇函數(shù),…………………………12

又因為上的單調遞減函數(shù),所以恒成立,…………………14

所以恒成立, 所以…………………………16

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩地相距500千米,一輛貨車從甲地行駛到乙地,規(guī)定速度不得超過100千米小時.已知貨車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度(千米時)的平方成正比,比例系數(shù)為0.01;固定部分為元().

(1)把全程運輸成本(元)表示為速度(千米時)的函數(shù),并指出這個函數(shù)的定義域;

(2)為了使全程運輸成本最小,汽車應以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知兩條公路的交匯點處有一學校,現(xiàn)擬在兩條公路之間的區(qū)域內建一工廠,在兩公路旁(異于點)處設兩個銷售點,且滿足(千米),(千米),設.

(1)試用表示,并寫出的范圍;

(2)當為多大時,工廠產(chǎn)生的噪聲對學校的影響最。垂S與學校的距離最遠).

(注:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=lnx﹣x+a+1
(1)若存在 x∈(0,+∞)使得f(x)≥0成立,求a的范圍;
(2)求證:當x>1時,在(1)的條件下, 成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過A(0,1)和且與x軸相切的圓只有一個,求的值及圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(12分)已知函數(shù)f(x)對任意的實數(shù)m,n都有:f(mn)=f(m)+f(n)-1,

且當x>0時,有f(x)>1.

(1)求f(0).

(2)求證:f(x)在R上為增函數(shù).

(3)若f(1)=2,且關于x的不等式f(ax-2)+f(xx2)<3對任意的x∈[1,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:52,54,54,56,56,56,55,55,55,55.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加6后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應相同的是(  )

A. 眾數(shù) B. 平均數(shù)

C. 中位數(shù) D. 標準差

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國共產(chǎn)黨第十九次全國代表大會于20171024日在北京召開,會議提出“決勝全面建成小康社會”.某市積極響應開展“脫貧攻堅”,為2020年“全面建成小康社會”貢獻力量.為了解該市農(nóng)村“脫貧攻堅“情況,從某縣調查得到農(nóng)村居民2011年至2017年家庭人均純收入(單位:百元)的數(shù)據(jù)如下表:

年份

2011

2012

2013

2014

2015

2016

2017

年人均純收入(百元)

41

45

48

56

60

64

71

注:小康的標準是農(nóng)村居民家庭年人均純收入達到8000.

(1)求關于的線性回歸方程;

(2)利用(1)中的回歸方程,預測2020年該縣農(nóng)村居民家庭年人均純收入能否達到“全面建成小康社會”的標準?

附:回歸直線的斜率和截距的最小二乘估計公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數(shù),得下面柱狀圖.

表示臺機器在三年使用期內需更換的易損零件數(shù),表示臺機器在購買易損零件上所需的費用(單位:元),表示購機的同時購買的易損零件數(shù).

(1)若,求的函數(shù)解析式;

(2)若要求需更換的易損零件數(shù)不大于的頻率不小于,求的最小值;

(3)假設這臺機器在購機的同時每臺都購買個易損零件,或每臺都購買個易損零件,分別計算這臺機器在購買易損零件上所需費用的平均數(shù),以此作為決策依據(jù),購買臺機器的同時應購買個還是個易損零件?

查看答案和解析>>

同步練習冊答案