5.設(shè)條件{p:log2(x-1)<0;結(jié)論q:($\frac{1}{2}$)x-3>1,則p是q的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.非充分非必要條件

分析 求出p,q的等價(jià)條件,利用充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:由log2(x-1)<0得0<x-1<1,即1<x<2,即p:1<x<2,
由($\frac{1}{2}$)x-3>1,得x-3<0,即q:x<3,
∴p是q的充分不必要條件,
故選:B.

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,利用不等式的解法求出不等式的等價(jià)條件是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某校在高三抽取了500名學(xué)生,記錄了他們選修A、B、C三門課的選修情況,如表:
 科目
學(xué)生人數(shù)
 A B C
 120 是 否 是
 60 否 否 是
 70 是 是 否
 50 是 是 是
 150 否 是 是
 50 是 否 否
(Ⅰ)試估計(jì)該校高三學(xué)生在A、B、C三門選修課中同時(shí)選修2門課的概率.
(Ⅱ)若該高三某學(xué)生已選修A,則該學(xué)生同時(shí)選修B、C中哪門的可能性大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若復(fù)數(shù)z滿足(1+i)•z=3-2i(i是虛數(shù)單位),則z等于( 。
A.$\frac{-1-5i}{2}$B.$\frac{1+5i}{2}$C.$\frac{1-5i}{2}$D.$\frac{-1+5i}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某高三文科班有A,B兩個(gè)學(xué)習(xí)小組,每組8人,在剛剛進(jìn)行的雙基考試中這兩組學(xué)生歷史考試的成績?nèi)鐖D莖葉圖所示:
(1)這兩組學(xué)生歷史成績的中位數(shù)和平均數(shù)分別是多少?
(2)歷史老師想要在這兩個(gè)學(xué)習(xí)小組中選擇一個(gè)小組進(jìn)行獎(jiǎng)勵(lì),請(qǐng)問選擇哪個(gè)小組比較好,只說明結(jié)論,不用說明理由;
(3)若成績?cè)?0分以上(包括90分)的同學(xué)視為優(yōu)秀,則從這兩組歷史成績優(yōu)秀的學(xué)生中抽取2人,求至少有一人來自B學(xué)習(xí)小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b≥1)的離心率e=$\frac{\sqrt{3}}{2}$,橢圓的左焦點(diǎn)為F,上頂點(diǎn)為EE,直線EF被圓x2+y2=$\frac{15}{16}$截得的弦長為$\frac{\sqrt{3}}{2}$.
(1)求橢圓C的方程;
(2)過點(diǎn)M(3,0)的直線交橢圓C于點(diǎn)A,B點(diǎn),設(shè)P為橢圓上一點(diǎn),且滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$=t$\overrightarrow{OP}$(O為坐標(biāo)原點(diǎn)),當(dāng)|AB|<$\sqrt{3}$時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)集合A={1,2,…n},n≥4,n∈N*,若X⊆A,且2≤Card(X)≤n-2,(Card(X)表示集合X中的元素個(gè)數(shù))令aX表示X中最大數(shù)與最小數(shù)之和,則
(1)當(dāng)n=5時(shí),集合X的個(gè)數(shù)為20
(2)所有aX的平均值為n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若$\frac{2+ai}{1+i}$=b+i,則復(fù)數(shù)a+bi在復(fù)平面內(nèi)表示的點(diǎn)所在的象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.2015年12月10日,我國科學(xué)家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻(xiàn)獲得諾貝爾醫(yī)學(xué)獎(jiǎng).以青蒿素類藥物為主的聯(lián)合療法已經(jīng)成為世界衛(wèi)生組織推薦的抗瘧疾標(biāo)準(zhǔn)療法.目前,國內(nèi)青蒿人工種植發(fā)展迅速.調(diào)查表明,人工種植的青蒿素長勢(shì)與海拔高度、土壤酸堿度、空氣濕度的指標(biāo)有很強(qiáng)的相關(guān)性.現(xiàn)將這三項(xiàng)指標(biāo)分別記為x,y,z,并對(duì)它們進(jìn)行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標(biāo)ω=x+y+z的值評(píng)定人工種植的青蒿素的長勢(shì)等級(jí);若能ω≥4,則長勢(shì)為一級(jí);若2≤ω≤3,則長勢(shì)為二級(jí);若0≤ω≤1,則長勢(shì)為三級(jí).為了了解目前人工種植的青蒿素的長勢(shì)情況.研究人員隨即抽取了10塊青蒿人工種植地,得到如表結(jié)果;
種植地編號(hào)A1A2A3A4A5
(x,y,z)(0,1,0)(1,2,1)(2,1,1)(2,2,2)(0,1,1)
種植地編號(hào)A6A7A8A9A10
(x,y,z)(1,1,2)(2,1,2)(2,0,1)(2,2,1)(0,2,1)
(1)若該地有青蒿人工種植地180個(gè),試估計(jì)該地中長勢(shì)等級(jí)為三級(jí)的個(gè)數(shù);
(2)從長勢(shì)等級(jí)為一級(jí)的青蒿人工種植地中隨機(jī)抽取兩個(gè),求這兩個(gè)人工種植地的綜合指標(biāo)ω均為4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,DE=3.
(Ⅰ)求證:AB∥平面CDE;
(Ⅱ)求證:平面ACE⊥平面CDE;
(Ⅲ)求三棱錐E-ACD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案