若=(cosωx,sinωx),=(sinωx,0),其中ω>0,函數(shù)f(x)=(+)·+k.
(1)若f(x)圖象申相鄰兩條對稱軸間的距離不小于,求ω的取值范圍.
(2)若f(x)的最小正周期為π,且當(dāng)x∈[-,]時(shí),f(x)的最大值是,求f(x)的解析式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:浙江省金華一中2011-2012學(xué)年高一下學(xué)期期中考試數(shù)學(xué)試卷 題型:022
ω是正實(shí)數(shù),設(shè)Sω={|f(x)=cos[ω(x+)]是奇函數(shù)},若對每個(gè)實(shí)數(shù)a,Sω∩(a,a+1)的元素不超過2個(gè),且有a使Sω∩(a,a+1)含有2個(gè)元素,則ω的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆高考數(shù)學(xué)第一輪復(fù)習(xí)測試題6 題型:044
(理)已知向量m=(sinωx+cosωx,cosωx),n=(cosωx-sinωx,2 sinωx),其中ω>0,函數(shù)f(x)=m·n,若f(x)相鄰兩對稱軸間的距離為.
(1)求ω的值,并求f(x)的最大值及相應(yīng)x的集合;
(2)在△ABC中,a、b、c分別是A、B、C所對的邊,△ABC的面積S=5,b=4,f(A)=1,求邊a的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:湖南師大附中2012屆高三第二次月考數(shù)學(xué)文科試題 題型:044
已知向量a=(2cos,1)b=(cos,3cosx),設(shè)函數(shù)f(x)=(a-b)·a.
(1)若x∈R,f(x)≤a(a∈R),求a的取值范圍;
(2)在△ABC中,角A、B、C所對的邊分別為a,b,c,且f(A)=4,a=,求△ABC的面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:山東省師大附中2012屆高三4月沖刺考試數(shù)學(xué)文科試題 題型:044
已知向量=(cosωx,sinωx),=(cosωx,cosωx),其中(0<ω<2).函數(shù)f(x)=·-,其圖象的一條對稱軸為.
(Ⅰ)求函數(shù)f(x)的表達(dá)式及單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對邊,S為其面積,若=1,b=l,S△ABC=,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)平面向量=(cosx,sinx),=(cosx+2,s inx),=(sinα,cosα),x∈R.
(1)若⊥,求cos(2x+2α)的值;
(2)若x∈,證明和不可能平行;
(3)若α=0,求函數(shù)f(x)=·(-2)的最大值,并求出相應(yīng)的x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com