5.與60°相等的弧度數(shù)是(  )
A.60πB.C.πD.$\frac{π}{3}$

分析 根據(jù)π弧度等于180°,求得60°化為弧度角的值.

解答 解:與60°相等的弧度數(shù)是π•$\frac{60°}{180°}$=$\frac{π}{3}$,
故選:D.

點評 本題主要考查把角度化為弧度的方法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.從某工廠生產(chǎn)的產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量結(jié)果得如表頻數(shù)分布表:
質(zhì)量指標(biāo)值分組[75,85)[85,95)[95,105)[105,115)[115,125)
頻數(shù)10204020      10
(1)作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計這種產(chǎn)品質(zhì)量指標(biāo)的平均數(shù)及中位數(shù)(要求寫出過程);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該工廠生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于85的產(chǎn)品
至少要占全部產(chǎn)品85%”的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知(2x-$\frac{1}{\sqrt{x}}$)5
(Ⅰ)求展開式中的倒數(shù)第3項;
(Ⅱ)求展開式中含$\frac{1}{x}$項的系數(shù);
(Ⅲ)設(shè)(2x-$\frac{1}{\sqrt{x}}$)5的展開式中前三項的二項式系數(shù)之和為M,(1+ax)6的展開式中各項系數(shù)之和為N,若4M=N,求正實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某運動員進(jìn)行射擊訓(xùn)練,若該運動員進(jìn)行了5次射擊,則互斥而不對立的兩個事件是(  )
A.恰好擊中3次,擊中奇數(shù)次B.擊中不少于3次,擊中不多于4次
C.恰好擊中3次,恰好擊中4次D.擊中不多于3次,擊中不少于4次

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若數(shù)據(jù)x1,x2,x3,x4,x5的方差為3,則數(shù)據(jù)2x1+1,2x2+1,2x3+1,2x4+1,2x5+1的方差為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=$\sqrt{2}$cos(πx-$\frac{π}{6}$)的最小正周期是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖程序的輸出結(jié)果為( 。
A.3,2B.3,3C.2,2D.2,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)是定義在(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x)且有3f(x)+xf′(x)<0,則不等式(x+2016)3f(x+2016)+8f(-2)<0的解集為( 。
A.(-2018,-2016)B.(-∞,-2018)C.(-2016,-2015)D.(-∞,-2012)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)甲、乙、丙三個乒乓球協(xié)會的分別選派3,1,2名運動員參加某次比賽,甲協(xié)會運動員編號分別為A1,A2,A3,乙協(xié)會編號為A4,丙協(xié)會編號分別為A5,A6,若從這6名運動員中隨機抽取2名參加雙打比賽.
(1)用所給編號列出所有可能抽取的結(jié)果;
(2)求丙協(xié)會至少有一名運動員參加雙打比賽的概率;
(3)求參加雙打比賽的兩名運動員來自同一協(xié)會的概率.

查看答案和解析>>

同步練習(xí)冊答案